Autophagy genes are required for normal lipid levels in C. elegans

Sanford-Burnham Medical Research Institute
Autophagy (Impact Factor: 11.42). 01/2013; 9(3). DOI: 10.4161/auto.22930
Source: PubMed

ABSTRACT Autophagy is a cellular catabolic process in which various cytosolic components are degraded. For example, autophagy can mediate lipolysis of neutral lipid droplets. In contrast, we here report that autophagy is required to facilitate normal levels of neutral lipids in C. elegans. Specifically, by using multiple methods to detect lipid droplets including CARS microscopy, we observed that mutants in the gene bec- 1 (VPS30/ATG6/BECN1), a key regulator of autophagy, failed to store substantial neutral lipids in their intestines during development. Moreover, loss of bec-1 resulted in a decline in lipid levels in daf-2 [insulin/IGF-1 receptor (IIR) ortholog] mutants and in germline-less glp-1/Notch animals, both previously recognized to accumulate neutral lipids and have increased autophagy levels. Similarly, inhibition of additional autophagy genes, including unc-51/ULK1/ATG1 and lgg-1/ATG8/MAP1LC3A/LC3 during development, led to a reduction in lipid content. Importantly, the decrease in fat accumulation observed in animals with reduced autophagy did not appear to be due to a change in food uptake or defecation. Taken together, these observations suggest a broader role for autophagy in lipid remodeling in C. elegans.

  • [Show abstract] [Hide abstract]
    ABSTRACT: For a long time, autophagy has been mainly studied in yeast or mammalian cell lines, and assays for analyzing autophagy in these models have been well described. More recently, the involvement of autophagy in various physiological functions has been investigated in multicellular organisms. Modification of autophagy flux is involved in developmental processes, resistance to stress conditions, aging, cell death and multiple pathologies. So, the use of animal models is essential to understand these processes in the context of different cell types and during the whole life. For ten years, the nematode Caenorhabditis elegans has emerged as a powerful model to analyze autophagy in physiological or pathological contexts. In this article, we present some of the established approaches and the emerging tools available to monitor and manipulate autophagy in C. elegans, and discuss their advantages and limitations. Copyright © 2014. Published by Elsevier Inc.
    Methods 12/2014; 75. DOI:10.1016/j.ymeth.2014.11.019 · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sodium taurocholate cotransporting polypeptide (NTCP) is a multiple transmembrane transporter predominantly expressed in the liver, functioning as a functional receptor for HBV. Through our continuous efforts to identify NTCP as a novel HBV target, we designed and synthesized a series of new compounds based on the structure of our previous compound NT-5. Molecular docking and MD simulation validated that a new compound named NTI-007 can tightly bind to NTCP, whose efficacy was also measured in vitro virological examination and cytotoxicity studies. Furthermore, autophagy was observed in NTI-007 incubated HepG 2.2.15 cells, and results of q-PCR and western blotting revealed that NTI-007 induced autophagy through NTCP-APOA1-HBx-Beclin1-mediated pathway. Taken together, considering crucial role of NTCP in HBV infection, NTCP-mediated autophagic pathway may provide a promising strategy of HBV therapy and given efficacy of NTI-007 triggering autophagy. Our study suggests pre-clinical potential of this compound as a novel anti-HBV drug candidate.
    Bioorganic & Medicinal Chemistry 01/2015; 23(5). DOI:10.1016/j.bmc.2015.01.020 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an important cellular process that serves as a companion pathway to the ubiquitin-proteasome system to degrade long-lived proteins and organelles to maintain cell homeostasis. Although initially characterized in yeast, autophagy is being realized as an important regulator of development and disease in mammals. Beclin1 (Becn1) is a putative tumor suppressor gene that has been shown to undergo a loss of heterozygosity in 40-75% of human breast, ovarian, and prostate cancers. Because Becn1 is a key regulator of autophagy, we sought to investigate its role in female reproduction by using a conditional knockout approach in mice. We find that pregnant females lacking Becn1 in the ovarian granulosa cell population have a defect in progesterone production and a subsequent preterm labor phenotype. Luteal cells in this model exhibit defective autophagy and a failure to accumulate lipid droplets needed for steroidogenesis. Collectively, we show that Becn1 provides essential functions in the ovary that are essential for mammalian reproduction.
    Proceedings of the National Academy of Sciences 09/2014; 111(40). DOI:10.1073/pnas.1409323111 · 9.81 Impact Factor