Article

Genomic effects of once-weekly, intramuscular interferon-beta1a treatment after the first dose and on chronic dosing: Relationships to 5-year clinical outcomes in multiple sclerosis patients.

Jacobs Neurological Institute, Buffalo General Hospital, Buffalo, NY 14203, United States.
Journal of Neuroimmunology (Impact Factor: 3.03). 11/2008; 205(1-2):113-25. DOI: 10.1016/j.jneuroim.2008.09.004
Source: PubMed

ABSTRACT To characterize gene expression in multiple sclerosis (MS) patients after the first dose and chronic dosing of 30 microg, once weekly, intramuscular interferon-beta1a (IFN-beta) and to delineate the pharmacogenomic differences between Good Responders and Partial Responders to IFN-beta therapy.
The treatment responses after the first IFN-beta dose and chronic IFN-beta dosing were assessed in 22 relapsing MS patients (17 females, 5 males; average age: 41.5+/-SD 10.4 years). Gene expression profiles in peripheral blood mononuclear cells were obtained prior to treatment and at 1, 2, 4, 8, 24, 48, 120, 168 h after the first IFN-beta dose and at 1, 6 and 12 months after chronic dosing with once-weekly 30 microg IFN-beta-1a intramuscularly. Repeated measures statistics with false discovery rate control were used. The functional characteristics, biological pathways and transcription factor sites were analyzed.
Of the 1000 genes modulated following the first dose and upon chronic dosing of IFN-beta in MS patients, approximately 35% were up-regulated and 65% were down- regulated; the percentage of modulated genes in common was approximately 50%. The expression of the pharmacodynamic mRNA markers of IFN-beta effect showed differences in time profiles for the Good Responder and Partial Responders to IFN-beta therapy and the Jak-STAT, TNFRSF10B, IL6, TGFbeta, retinoic acid and CDC42 pathways were differentially modulated. The patients with side effects to therapy showed differences in the TGFbeta1, IFNG/STAT3 and TNF pathways.
Gene expression is a valuable tool for understanding the molecular mechanisms of IFN-beta action in MS patients.

0 Bookmarks
 · 
42 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is an inflammatory and demyelinating disease of central nervous system comprising several subtypes. Pharmacological treatment involves only few drugs. Among these, interferon beta (IFN-β) and glatiramer acetate were the most used. Although evidence supports the efficacy of these agents in treating MS symptoms, actual studies allowed to introduce new innovative drugs in clinical practice. Applying pharmacogenetic approach to MS, IFN-β and several other immune pathways were abundantly investigated. Numerous reports identified some promising therapy markers but only few markers have emerged as clinically useful. This may be partially due to differences in clinical and methodological criteria in the studies. Indeed, responder and non-responder definitions lack standardized clinical definition. The goal of this review is to treat advances in research on the pharmacogenetic markers of MS drugs and to highlight possible correlations between type of responses and genetic profile, with regard to clinical and methodological discrepancies in the studies.The Pharmacogenomics Journal advance online publication, 9 October 2012; doi:10.1038/tpj.2012.41.
    The Pharmacogenomics Journal 10/2012; · 5.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic autoimmune diseases result from interactions between genes and environmental triggers that lead to dysregulation of both innate and adaptive immunity. Systems biology approaches enable the global characterization of complex systems at the DNA, RNA and protein levels. Recent technological breakthroughs such as deep sequencing or high-throughput proteomics are revealing novel inflammatory pathways involved in autoimmunity. Herein, we review recent developments, challenges and promising avenues in the use of systems approaches to understand human systemic autoimmune and autoinflammatory diseases.
    Current opinion in immunology 09/2013; · 10.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Monocytes, which are key players in innate immunity, are outnumbered by neutrophils and lymphocytes among peripheral white blood cells. The cytokine interferon-β (IFN-β) is widely used as an immunomodulatory drug for multiple sclerosis and its functional pathways in peripheral blood mononuclear cells (PBMCs) have been previously described. The aim of the present study was to identify novel, cell-specific IFN-β functions and pathways in tumor necrosis factor (TNF)-α-activated monocytes that may have been missed in studies using PBMCs. METHODOLOGYPRINCIPAL FINDINGS: Whole genome gene expression profiles of human monocytes and T cells were compared following in vitro priming to TNF-α and overnight exposure to IFN-β. Statistical analyses of the gene expression data revealed a cell-type-specific change of 699 transcripts, 667 monocyte-specific transcripts, 21 T cell-specific transcripts and 11 transcripts with either a difference in the response direction or a difference in the magnitude of response. RT-PCR revealed a set of differentially expressed genes (DEGs), exhibiting responses to IFN-β that are modulated by TNF-α in monocytes, such as RIPK2 and CD83, but not in T cells or PBMCs. Known IFN-β promoter response elements, such as ISRE, were enriched in T cell DEGs but not in monocyte DEGs. The overall directionality of the gene expression regulation by IFN-β was different in T cells and monocytes, with up-regulation more prevalent in T cells, and a similar extent of up and down-regulation recorded in monocytes. CONCLUSIONS: By focusing on the response of distinct cell types and by evaluating the combined effects of two cytokines with pro and anti-inflammatory activities, we were able to present two new findings First, new IFN-β response pathways and genes, some of which were monocytes specific; second, a cell-specific modulation of the IFN-β response transcriptome by TNF-α.
    PLoS ONE 01/2013; 8(4):e62366. · 3.73 Impact Factor