The Human Phenotype Ontology: A Tool for Annotating and Analyzing Human Hereditary Disease

Institute for Medical Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
The American Journal of Human Genetics (Impact Factor: 10.99). 11/2008; 83(5):610-5. DOI: 10.1016/j.ajhg.2008.09.017
Source: PubMed

ABSTRACT There are many thousands of hereditary diseases in humans, each of which has a specific combination of phenotypic features, but computational analysis of phenotypic data has been hampered by lack of adequate computational data structures. Therefore, we have developed a Human Phenotype Ontology (HPO) with over 8000 terms representing individual phenotypic anomalies and have annotated all clinical entries in Online Mendelian Inheritance in Man with the terms of the HPO. We show that the HPO is able to capture phenotypic similarities between diseases in a useful and highly significant fashion.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lately, ontologies have become a fundamental building block in the process of formalising and storing complex biomedical information. The community-driven ontology curation process, however, ignores the possibility of multiple communities building, in parallel, conceptualisations of the same domain, and thus providing slightly different perspectives on the same knowledge. The individual nature of this effort leads to the need of a mechanism to enable us to create an overarching and comprehensive overview of the different perspectives on the domain knowledge. We introduce an approach that enables the loose integration of knowledge emerging from diverse sources under a single coherent interoperable resource. To accurately track the original knowledge statements, we record the provenance at very granular levels. We exemplify the approach in the rare bone disorders domain by proposing the Rare Bone Disorders Ontology (RBDO). Using RBDO, researchers are able to answer queries, such as: "What phenotypes describe a particular disorder and are common to all sources?" or to understand similarities between disorders based on divergent groupings (classifications) provided by the underlying sources. RBDO is available at In order to support lightweight query and integration, the knowledge captured by RBDO has also been made available as a SPARQL Endpoint at
    Journal of Biomedical Semantics 04/2015; 6(1):21. DOI:10.1186/s13326-015-0008-2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heritable bleeding and platelet disorders (BPD) are heterogeneous and frequently have an unknown genetic basis. The BRIDGE-BPD study aims to discover new causal genes for BPD by high throughput sequencing using cluster analyses based on improved and standardised deep, multi-system phenotyping of cases. We report a new approach in which the clinical and laboratory characteristics of BPD cases are annotated with adapted Human Phenotype Ontology (HPO) terms. Cluster analyses are then used to characterise groups of cases with similar HPO terms and variants in the same genes. We show that 60% of index cases with heritable BPD enrolled at 10 European or US centres were annotated with HPO terms indicating abnormalities in organ systems other than blood or blood-forming tissues, particularly the nervous system. Cases within pedigrees clustered closely together on the bases of their HPO-coded phenotypes, as did cases sharing several clinically suspected syndromic disorders. Cases subsequently found to harbour variants in ACTN1 also clustered closely, even though diagnosis of this recently described disorder was not possible using only the clinical and laboratory data available to the enrolling clinician. These findings validate our novel HPO-based phenotype clustering methodology for known BPD, thus providing a new discovery tool for BPD of unknown genetic basis. This approach will also be relevant for other rare diseases with significant genetic heterogeneity.
    Genome Medicine 04/2015; 7(1). DOI:10.1186/s13073-015-0151-5 · 4.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2-1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case-control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e - 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enr

Full-text (2 Sources)

Available from
Jun 3, 2014