Article

Brg1 governs distinct pathways to direct multiple aspects of mammalian neural crest cell development.

Division of Cardiovascular Medicine, Department of Medicine, Department of Chemical and Systems Biology, and Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2013; DOI: 10.1073/pnas.1218072110
Source: PubMed

ABSTRACT Development of the cerebral vessels, pharyngeal arch arteries (PAAs). and cardiac outflow tract (OFT) requires multipotent neural crest cells (NCCs) that migrate from the neural tube to target tissue destinations. Little is known about how mammalian NCC development is orchestrated by gene programming at the chromatin level, however. Here we show that Brahma-related gene 1 (Brg1), an ATPase subunit of the Brg1/Brahma-associated factor (BAF) chromatin-remodeling complex, is required in NCCs to direct cardiovascular development. Mouse embryos lacking Brg1 in NCCs display immature cerebral vessels, aberrant PAA patterning, and shortened OFT. Brg1 suppresses an apoptosis factor, Apoptosis signal-regulating kinase 1 (Ask1), and a cell cycle inhibitor, p21(cip1), to inhibit apoptosis and promote proliferation of NCCs, thereby maintaining a multipotent cell reservoir at the neural crest. Brg1 also supports Myosin heavy chain 11 (Myh11) expression to allow NCCs to develop into mature vascular smooth muscle cells of cerebral vessels. Within NCCs, Brg1 partners with chromatin remodeler Chromodomain-helicase-DNA-binding protein 7 (Chd7) on the PlexinA2 promoter to activate PlexinA2, which encodes a receptor for semaphorin to guide NCCs into the OFT. Our findings reveal an important role for Brg1 and its downstream pathways in the survival, differentiation, and migration of the multipotent NCCs critical for mammalian cardiovascular development.

0 Followers
 · 
324 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic events including chromatin remodeling and histone modifications have recently emerged as important contributors to a variety of neurodevelopmental disorders. This review focuses on CHARGE syndrome, a multiple anomaly condition caused by mutations in the gene encoding CHD7, an ATP-dependent chromatin remodeling protein. CHD7 exhibits pleiotropic effects during embryonic development, consistent with highly variable clinical features in CHARGE syndrome. In this review, a historical description of CHARGE is provided, followed by establishment of diagnostic criteria, gene discovery, and development of animal models. Current understanding of epigenetic CHD7 functions and interacting proteins in cells and tissues is also presented, and final emphasis is placed on challenges and major questions to be answered with ongoing research efforts.
    12/2014; 3(1). DOI:10.1007/s40142-014-0059-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semaphorins were originally identified as neuronal guidance molecules mediating their attractive or repulsive signals by forming complexes with plexin and neuropilin receptors. Subsequent research has identified functions for semaphorin signaling in many organs and tissues outside of the nervous system. Vital roles for semaphorin signaling in vascular patterning and cardiac morphogenesis have been demonstrated, and impaired semaphorin signaling has been associated with various human cardiovascular disorders, including persistent truncus arteriosus, sinus bradycardia and anomalous pulmonary venous connections. Here, we review the functions of semaphorins and their receptors in cardiovascular development and disease and highlight important recent discoveries in the field. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Metabolism 02/2015; 21(2):163-173. DOI:10.1016/j.cmet.2014.12.015 · 16.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is growing recognition of cerebrovascular contributions to neurodegenerative diseases. In the walls of cerebral arteries, amyloid-beta (Aβ) accumulation is evident in a majority of aged people and patients with cerebral amyloid angiopathy. Here, we leverage human pluripotent stem cells to generate vascular smooth muscle cells (SMCs) from neural crest progenitors, recapitulating brain-vasculature-specific attributes of Aβ metabolism. We confirm that the lipoprotein receptor, LRP1, functions in our neural-crest-derived SMCs to mediate Aβ uptake and intracellular lysosomal degradation. Hypoxia significantly compromises the contribution of SMCs to Aβ clearance by suppressing LRP1 expression. This enabled us to develop an assay of Aβ uptake by using the neural crest-derived SMCs with hypoxia as a stress paradigm. We then tested several vascular protective compounds in a high-throughput format, demonstrating the value of stem-cell-based phenotypic screening for novel therapeutics and drug repurposing, aimed at alleviating amyloid burden.
    Cell Reports 10/2014; 9(1). DOI:10.1016/j.celrep.2014.08.065 · 7.21 Impact Factor