Intestinal Microbiota Containing Barnesiella Species Cures Vancomycin-Resistant Enterococcus faecium Colonization

Infectious Diseases Service, Department of Medicine.
Infection and immunity (Impact Factor: 3.73). 01/2013; 81(3). DOI: 10.1128/IAI.01197-12
Source: PubMed


Bacteria causing infections in hospitalized patients are increasingly antibiotic-resistant. Classical infection control practices are only partially effective at preventing spread of antibiotic-resistant bacteria within hospitals. Because the density of intestinal colonization by the highly antibiotic-resistant bacterium vancomycin-resistant Enterococcus (VRE) can exceed 10(9) organisms per gram of feces, even optimally implemented hygiene protocols often fail. Decreasing the density of intestinal colonization, therefore, represents an important approach to limit VRE transmission. We demonstrate that reintroduction of a diverse intestinal microbiota to densely VRE colonized mice eliminates VRE from the intestinal tract. While oxygen-tolerant members of the microbiota are ineffective at eliminating VRE, administration of obligate anaerobic commensal bacteria to mice results in a billion-fold reduction in the density of intestinal VRE colonization. 16S rRNA gene sequence analysis of intestinal bacterial populations isolated from mice that cleared VRE following microbiota reconstitution revealed that re-colonization with a microbiota that contains Barnesiella correlates with VRE elimination. Characterization of the fecal microbiota of patients undergoing allogeneic hematopoietic stem cell transplantation demonstrated that intestinal colonization with Barnesiella confers resistance to intestinal domination and bloodstream infection with VRE. Our studies indicate that obligate anaerobic bacteria belonging to the Barnesiella genus enable clearance of intestinal VRE colonization and may provide novel approaches to prevent the spread of highly antibiotic-resistant bacteria.

Download full-text


Available from: Lauren Lipuma, Sep 30, 2015
  • Source
    • "The protective effect of some bacterial species such as Barnesiella has been also confirmed in cases of broad antibiotic treatment [9] "
    [Show abstract] [Hide abstract]
    ABSTRACT: The human gut commensal microbiota forms a complex population of microorganisms that survive by having maintaining a symbiotic relationship with the host. Amongst the metabolic benefits it brings, formation of adaptive immune system and maintenance of its homeostasis are functions that play as important role. This review discusses the integral elements of commensal microbiota that stimulate responses of different parts of the immune system and leads to health or disease. It aims to establish conditions and factors that contribute to gut commensal microbiota's transformation from symbiotic to antibiotic relationship with human. We suggest that a the host-microbiota relationship has been evolved to benefit both parties and any changes that may lead to disease, are not due to unfriendly properties of the gut microbiota but due to host genetics or environmental changes such as diet or infection.
    Medicina (Kaunas, Lithuania) 03/2015; 464(2). DOI:10.1016/j.medici.2015.03.001 · 0.49 Impact Factor
  • Source
    • "16S rRNA Gene Amplification, Pyrosequencing, and Analysis For each sample, the V1–V3 region of the 16S rRNA gene was amplified by PCR and sequenced using a 454 GS FLX Titanium platform following Roche recommendations. Sequences were processed using mothur (Schloss et al., 2009) as previously described (Ubeda et al., 2013), with some modifications. See Supplemental Experimental Procedures for further details of all methods and statistical analyses. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing), we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2), in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis. E. coli that increased intestinal AI-2 levels altered the composition of the antibiotic-treated gut microbiota, favoring the expansion of the Firmicutes phylum. This significantly increased the Firmicutes/Bacteroidetes ratio, to oppose the strong effect of the antibiotic, which had almost cleared the Firmicutes. This demonstrates that AI-2 levels influence the abundance of the major phyla of the gut microbiota, the balance of which is known to influence human health. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 03/2015; 10(11). DOI:10.1016/j.celrep.2015.02.049 · 8.36 Impact Factor
  • Source
    • "Note that only five mouse datasets are used in this comparison because the dataset from Cho et al. (Cho et al., 2012) does not include data for abundance and thus cannot be used for comparison of relative abundances between mouse and human gut microbiota. (B) Mouse core and pan-gut microbiota size in all possible combinations of the six mouse gut microbiota datasets (Cho et al., 2012; Nagy-Szakal et al., 2012; Riboulet-Bisson et al., 2012; Ubeda et al., 2013; Ward et al., 2012; Zenewicz et al., 2013). The pan-gut microbiota is the set of genera found at least once in any of the datasets compared (union set), whereas the core gut microbiota is the set of genera found in all compared datasets (intersection set). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.
    Disease Models and Mechanisms 01/2015; 8(1):1-16. DOI:10.1242/dmm.017400 · 4.97 Impact Factor
Show more