Article

Heparan sulfate deficiency in autistic postmortem brain tissue from the subventricular zone of the lateral ventricles

Department of Cell Biology and Physiology, University of North Carolina, 115 Mason Farm Road, Chapel Hill, NC 27599, USA.
Behavioural brain research (Impact Factor: 3.39). 01/2013; 243(1). DOI: 10.1016/j.bbr.2012.12.062
Source: PubMed

ABSTRACT Abnormal cellular growth and organization have been characterized in postmortem tissue from brains of autistic individuals, suggestive of pathology in a critical neurogenic niche, the subventricular zone (SVZ) of the brain lateral ventricles (LV). We examined cellular organization, cell proliferation, and constituents of the extracellular matrix such as N-sulfated heparan sulfate (HS) and laminin (LAM) in postmortem brain tissue from the LV-SVZ of young to elderly individuals with autism (n=4) and age-matched typically developing (TD) individuals (n=4) using immunofluorescence techniques. Strong and systematic reductions in HS immunofluorescence were observed in the LV-SVZ of the TD individuals with increasing age. For young through mature, but not elderly, autistic pair members, HS was reduced compared to their matched TDs. Cellular proliferation (Ki67+) was higher in the autistic individual of the youngest age-matched pair. These preliminary data suggesting that HS may be reduced in young to mature autistic individuals are in agreement with previous findings from the BTBR T+tf/J mouse, an animal model of autism; from mice with genetic modifications reducing HS; and with genetic variants in HS-related genes in autism. They suggest that aberrant extracellular matrix glycosaminoglycan function localized to the subventricular zone of the lateral ventricles may be a biomarker for autism, and potentially involved in the etiology of the disorder.

Download full-text

Full-text

Available from: Brandon L Pearson, Aug 02, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multisystem interactions are well established in neurological disorders, in spite of conventional views that only the central nervous system (CNS) is impacted. We review evidence for mutual interactions between the immune and nervous systems and show how these seem to be implicated in the origin and progression of nervous system disorders. Well-established immune system triggers leading to autoimmune reactions are considered. Of these, aluminum, a known neurotoxicant, may be of particular importance. We have demonstrated elsewhere that aluminum has the potential to induce damage at a range of levels in the CNS leading to neuronal death, circuit malfunction, and ultimately system failure. Aluminum is widely used as an adjuvant in various vaccine formulations and has been implicated in a multisystem disorder termed “autoimmune/inflammatory syndrome induced by adjuvants” (ASIA). The implications of aluminum-induced ASIA in some disorders of the CNS are considered. We propose a unified theory capturing a progression from a local response to a systemic response initiated by disruption of water-based interfaces of exposed cells.
    Immunome Research 01/2013; 9(069):1. DOI:10.4172/1745-7580.1000069
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteoglycans (PGs) regulate diverse functions in the central nervous system (CNS) by interacting with a number of growth factors, matrix proteins, and cell sur-face molecules. Heparan sulfate (HS) and chondroitin sulfate (CS) are two major glycosaminoglycans present in the PGs of the CNS. The functionality of these PGs is to a large extent dictated by the fine sulfation patterns present on their glycosaminoglycan (GAG) chains. In the past 15 years, there has been a significant expansion in our knowledge on the role of HS and CS chains in various neurological processes, such as neuronal growth, regen-eration, plasticity, and pathfinding. However, defining the relation between distinct sulfation patterns of the GAGs and their functionality has thus far been difficult. With the emergence of novel tools for the synthesis of defined GAG structures, and techniques for their characterization, we are now in a better position to explore the structure-function relation of GAGs in the context of their sulfation patterns. In this review, we discuss the importance of GAGs on CNS development, injury, and disorders with an emphasis on their sulfation patterns. Finally, we outline several GAG-based therapeutic strategies to exploit GAG chains for ameliorating various CNS disorders.
    Biomolecular concepts 03/2013; 4(3):233-257. DOI:10.1515/bmc-2012-0042
  • [Show abstract] [Hide abstract]
    ABSTRACT: The history of science has frequently included a problem-based impetus toward research that can be translated expeditiously into solutions. A current problem is that psychopathologies, typically chronic, contribute hugely to the economic and social burden of medical care, especially in the United States. For behavioral neuroscientists a psychopathology-aimed translational research emphasis particularly involves animal models to facilitate the experimental and invasive work necessary to an understanding of the biology of normal and aberrant behavior. When the etiology of a particular psychopathology is unknown, and there are no specific biomarkers, behavioral parallels between the focal disorder and its putative models become crucial elements in assessing model validity. Evaluation of these parallels is frequently neglected, reflecting in part the lack of a systematic conceptualization of the organization of behavior and how this may be conserved across species. Recent work specifically attempting to bridge this gap suggests that analysis of behaviors that are functional - adaptive in crucial situations such as danger or social contexts - can facilitate an understanding of the parallels between behaviors of human and nonhuman species, including the dysfunctional behaviors of psycho-pathologies. As research with animal models comes to provide a more systematic analysis of particular behaviors and their adaptive functions, cross-talk between model and focal psychopathology may be advantageous to understanding both.
    Neuroscience & Biobehavioral Reviews 06/2013; 37(8). DOI:10.1016/j.neubiorev.2013.06.008 · 10.28 Impact Factor
Show more