Matrix metalloproteinases as drug targets in acute pulmonary embolism.

Department of Pharmacology, Faculty of Medicine University of Sao Paulo Av. Bandeirantes, 3900 14049-900 Ribeirao Preto, SP, Brazil.
Current drug targets (Impact Factor: 3.6). 01/2013; DOI: 10.2174/1389450111314030006
Source: PubMed

ABSTRACT Acute pulmonary embolism is a critical condition associated with increased mortality. Lung embolization causes acute pulmonary hypertension and right ventricle afterload. Global heart ischemia supervenes and may lead to severe shock and death. In this article, we reviewed current literature supporting the idea that abnormal matrix metalloproteinase (MMP) activity contributes to acute pulmonary embolism-induced hemodynamic changes. While low MMP levels are usually found in normal lung tissues, it is well known that inflammation and lung injury increase MMP expression and activity. This is probably due to recruitment and migration of inflammatory cells from the circulation to lung tissues. In addition, recent studies have shown increased MMP levels and activity in the right ventricle from animals with acute pulmonary embolism. Such increases in proteolytic activity were associated with increased cardiac troponin I in serum, suggesting a possible role for MMPs in cardiomyocyte injury during acute pulmonary embolism. These alterations have justified the use of doxycycline as an MMP inhibitor in acute pulmonary embolism. We review current evidence indicating that MMPs are targets in this critical condition. MMP inhibition apparently exerts antihypertensive effects and protects against cardiomyocyte injury caused by acute pulmonary embolism.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The determination of matrix metalloproteases (MMPs) is relevant in many pathophysiological conditions, especially if associated with extracellular matrix remodeling; however, the results obtained are closely linked to the method used and are not directly comparable. The aim of this study was to perform a reappraisal of quantitative gel zymography technique for MMPs in human plasma, to use for comparison with commercially available ELISA and in those experimental conditions where the MMP active form needs to be revealed. The critical methodological parameters of zymography were checked and a comparison with a routinely used ELISA was performed. Sensitivity and reproducibility levels of zymography are suitable for detection of MMP-9 in human plasma, providing results closely related to those obtained by ELISA. Analytical parameters of zymography were suitable for detection of MMPs in human plasma. Quantitative zymography for MMPs is an alternative method for comparing the results of ELISA widely employed for MMP determination, thus reducing the discrepancies between laboratories regarding gelatinase assay.
    Journal of Clinical Laboratory Analysis 09/2014; 28(5). DOI:10.1002/jcla.21696 · 1.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute pulmonary thromboembolism (APT) is a critical condition associated with acute pulmonary hypertension. Recent studies suggest that oxidative stress and hemolysis contribute to APT-induced pulmonary hypertension, possibly as a result of increased nitric oxide (NO) consumption. We hypothesized that the antioxidant tempol could attenuate APT-induced hemolysis, and therefore attenuate APT-induced increases in plasma NO consumption. APT was induced in anesthetized sheep with autologous blood clots. The hemodynamic effects of tempol infused at 1.0mg/kg/min 30min after APT were determined. Hemodynamic measurements were carried out every 15min. To assess oxidative stress, serum 8-isoprostanes levels were measured by ELISA. Plasma cell-free hemoglobin concentrations and NO consumption by plasma samples were determined. An in vitro oxidative AAPH-induced hemolysis assay was used to further validate the in vivo effects of tempol. APT caused pulmonary hypertension, and increased pulmonary vascular resistance in proportion with the increases in 8-isoprostanes, plasma cell-free hemoglobin concentrations, and NO consumption by plasma (all P<0.05). Tempol attenuated the hemodynamic alterations by approximately 15-20% and blunted APT-induced increases in 8-isoprostanes, in cell-free hemoglobin concentrations, and the increases in NO consumption by plasma (P<0.05). Tempol dose-dependently attenuated AAPH-induced in vitro hemolysis (P<0.05). Our findings are consistent with the idea that antioxidant properties of tempol decrease APT-induced hemolysis and nitric oxide consumption, thus attenuating APT-induced pulmonary hypertension.
    Thrombosis Research 09/2013; 132(5). DOI:10.1016/j.thromres.2013.09.014 · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activated matrix metalloproteinases (MMPs) cause cardiomyocyte injury during acute pulmonary thromboembolism (APT). However, the functional consequences of this alteration are not known. We examined whether doxycycline (a MMP inhibitor) improves right ventricle function and the cardiac responses to dobutamine during APT. APT was induced with autologous blood clots (350 mg/kg) in anaesthetized male lambs pre-treated with doxycycline (Doxy, 10 mg/kg/day, intravenously) or saline. Non-embolized control lambs received doxycycline pre-treatment or saline. The responses to intravenous dobutamine (Dob, 1, 5, 10 μg/kg/min.) or saline infusions at 30 and 120 min. after APT induction were evaluated by echocardiography. APT increased mean pulmonary artery pressure and pulmonary vascular resistance index by ~185%. Doxycycline partially prevented APT-induced pulmonary hypertension (P < 0.05). RV diameter increased in the APT group (from 10.7 ± 0.8 to 18.3 ± 1.6 mm, P < 0.05), but not in the Doxy+APT group (from 13.3 ± 0.9 to 14.4 ± 1.0 mm, P > 0.05). RV dysfunction on stress echocardiography was observed in embolized lambs (APT+Dob group) but not in embolized animals pre-treated with doxycycline (Doxy+APT+Dob). APT increased MMP-9 activity, oxidative stress and gelatinolytic activity in the RV. Although doxycycline had no effects on RV MMP-9 activity, it prevented the increases in RV oxidative stress and gelatinolytic activity (P < 0.05). APT increased serum cardiac troponin I concentrations (P < 0.05), doxycycline partially prevented this alteration (P < 0.05). We found evidence to support that doxycycline prevents RV dysfunction and improves the cardiac responses to dobutamine during APT.
    Journal of Cellular and Molecular Medicine 11/2013; DOI:10.1111/jcmm.12163 · 3.70 Impact Factor