PCNA is ubiquitinated by RNF8.

Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA.
Cell cycle (Georgetown, Tex.) (Impact Factor: 5.01). 12/2008; 7(21):3399-404. DOI: 10.4161/cc.7.21.6949
Source: PubMed

ABSTRACT The ubiquitination of PCNA is an essential event in the operation of the DNA Damage Tolerance (DDT) pathway that is activated after DNA damage caused by UV or chemical agents during S-phase. This pathway allows the bypass of DNA damage by translesion synthesis that would otherwise cause replication fork stalling. PCNA is mono-ubiquitinated by Rad18-Rad6, and polyubiquitinated by Rad5-Ubc13/Uev1 in the DDT pathway. Mono-and polyubiquitination of PCNA are key processes in the translesion bypass and template switching sub-pathways of the DDT. DNA damage by IR causes DSBs, which trigger the DNA Damage Response (DDR). The ubiquitin ligase RNF8 has a critical role in the assembly of BRCA1 complexes at the DSBs in the DDR. We show that RNF8 readily mono-ubiquitinates PCNA in the presence of UbcH5c, and polyubiquitinates PCNA in the added presence of Ubc13/Uev1a. These reactions are the same as those performed by Rad18-Rad6 and Rad5-Ubc13. RNF8 depletion suppressed both UV and MNNG-stimulated mono-ubiquitination of PCNA, revealing that an RNF8-dependent pathway for PCNA ubiquitination is operative in vivo. These findings provide evidence that RNF8, a key E3 ligase in the DDR, may also play a role in the DDT.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In response to DNA damage, cells activate a highly conserved and complex kinase-based signaling network, commonly referred to as the DNA damage response (DDR), to safeguard genomic integrity. The DDR consists of a set of tightly regulated events, including detection of DNA damage, accumulation of DNA repair factors at the site of damage, and finally physical repair of the lesion. Upon overwhelming damage the DDR provokes detrimental cellular actions by involving the apoptotic machinery and inducing a coordinated demise of the damaged cells (DNA damage-induced apoptosis, DDIA). These diverse actions involve transcriptional activation of several genes that govern the DDR. Moreover, recent observations highlighted the role of ubiquitylation in orchestrating the DDR, providing a dynamic cellular regulatory circuit helping to guarantee genomic stability and cellular homeostasis (Popovic et al., 2014). One of the hallmarks of human cancer is genomic instability (Hanahan and Weinberg, 2011). Not surprisingly, deregulation of the DDR can lead to human diseases, including cancer, and can induce resistance to genotoxic anti-cancer therapy (Lord and Ashworth, 2012). Here, we summarize the role of ubiquitin-signaling in the DDR with special emphasis on its role in cancer and highlight the therapeutic value of the ubiquitin-conjugation machinery as a target in anti-cancer treatment strategy.
    Frontiers in Genetics 04/2015; 1(6). DOI:10.3389/fgene.2015.00098
  • [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotes, the evolutionarily conserved RAD6/RAD18 pathway of DNA damage tolerance overcomes unrepaired DNA lesions that interfere with the progression of replication forks, helping to ensure the completion of chromosome replication and the maintenance of genome stability in every cell cycle. This pathway uses two different strategies for damage bypass: translesion DNA synthesis, which is carried out by specialized polymerases that can replicate across the lesions, and DNA damage avoidance, a process that relies on a switch to an undamaged-DNA template for synthesis past the lesion. In this review, we summarize the current knowledge on DNA damage tolerance mechanisms mediated by RAD6/RAD18 that are used by eukaryotic cells to cope with DNA lesions during chromosome replication.
    Experimental Cell Research 11/2014; DOI:10.1016/j.yexcr.2014.07.009 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA damage tolerance (DDT) pathways, including translesion synthesis (TLS) and additional unknown mechanisms, enable recovery from replication arrest at DNA lesions. DDT pathways are regulated by post-translational modifications of proliferating cell nuclear antigen (PCNA) at its K164 residue. In particular, mono-ubiquitination by the ubiquitin ligase RAD18 is crucial for Polη-mediated TLS. Although the importance of modifications of PCNA to DDT pathways is well known, the relevance of its homo-trimer form, in which three K164 residues are present in a single ring, remains to be elucidated. Here, we show that multiple units of a PCNA homo-trimer are simultaneously mono-ubiquitinated in vitro and in vivo. RAD18 catalyzed sequential mono-ubiquitinations of multiple units of a PCNA homo-trimer in a reconstituted system. Exogenous PCNA formed hetero-trimers with endogenous PCNA in WI38VA13 cell transformants. When K164R-mutated PCNA was expressed in these cells at levels that depleted endogenous PCNA homo-trimers, multiple modifications of PCNA complexes were reduced and the cells showed defects in DDT after UV irradiation. Notably, ectopic expression of mutant PCNA increased the UV sensitivities of Polη-proficient, Polη-deficient, and REV1-depleted cells, suggesting the disruption of a DDT pathway distinct from the Polη- and REV1-mediated pathways. These results suggest that simultaneous modifications of multiple units of a PCNA homo-trimer are required for a certain DDT pathway in human cells.
    PLoS ONE 02/2015; 10(2):e0118775. DOI:10.1371/journal.pone.0118775 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014