Whole-exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy

1Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland.
Journal of Medical Genetics (Impact Factor: 5.64). 01/2013; 50(3). DOI: 10.1136/jmedgenet-2012-101375
Source: PubMed

ABSTRACT BACKGROUND: The genetic complexity of infantile cardiomyopathies is remarkable, and the importance of mitochondrial translation defects as a causative factor is only starting to be recognised. We investigated the genetic basis for infantile onset recessive hypertrophic cardiomyopathy in two siblings. METHODS AND RESULTS: Analysis of respiratory chain enzymes revealed a combined deficiency of complexes I and IV in the heart and skeletal muscle. Exome sequencing uncovered a homozygous mutation (L156R) in MRPL44 of both siblings. MRPL44 encodes a protein in the large subunit of the mitochondrial ribosome and is suggested to locate in close proximity to the tunnel exit of the yeast mitochondrial ribosome. We found severely reduced MRPL44 levels in the patient's heart, skeletal muscle and fibroblasts suggesting that the missense mutation affected the protein stability. In patient fibroblasts, decreased MRPL44 affected assembly of the large ribosomal subunit and stability of 16S rRNA leading to complex IV deficiency. Despite this assembly defect, de novo mitochondrial translation was only mildly affected in fibroblasts suggesting that MRPL44 may have a function in the assembly/stability of nascent mitochondrial polypeptides exiting the ribosome. Retroviral expression of wild-type MRPL44 in patient fibroblasts rescued the large ribosome assembly defect and COX deficiency. CONCLUSIONS: These findings indicate that mitochondrial ribosomal subunit defects can generate tissue-specific manifestations, such as cardiomyopathy.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes.
    Frontiers in Genetics 01/2015; 6:21. DOI:10.3389/fgene.2015.00021
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human mitochondrial ribosomes are highly divergent from all other known ribosomes and are specialized to exclusively translate membrane proteins. They are linked with hereditary mitochondrial diseases and are often the unintended targets of various clinically useful antibiotics. Using single-particle electron cryomicroscopy, we have determined the structure of its large subunit to 3.4 angstrom resolution, revealing 48 proteins, 21 of which are specific to mitochondria. The structure unveils an adaptation of the exit tunnel for hydrophobic nascent peptides, extensive remodeling of the central protuberance, including recruitment of mitochondrial tRNA(Val) to play an integral structural role, and changes in the tRNA binding sites related to the unusual characteristics of mitochondrial tRNAs.
    Science 10/2014; 346(6210). DOI:10.1126/science.1258026 · 31.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report novel defects of mitochondrial translation elongation factor Ts (EFTs), with high carrier frequency in Finland and expand the manifestations of this disease group from infantile cardiomyopathy to juvenile neuropathy/encephalopathy disorders.METHODS: DNA analysis, whole-exome analysis, protein biochemistry, and protein modeling.RESULTS: We used whole-exome sequencing to find the genetic cause of infantile-onset mitochondrial cardiomyopathy, progressing to juvenile-onset Leigh syndrome, neuropathy, and optic atrophy in 2 siblings. We found novel compound heterozygous mutations, c.944G>A [p.C315Y] and c.856C>T [p.Q286X], in the TSFM gene encoding mitochondrial EFTs. The same p.Q286X variant was found as compound heterozygous with a splice site change in a patient from a second family, with juvenile-onset optic atrophy, peripheral neuropathy, and ataxia. Our molecular modeling predicted the coding-region mutations to cause protein instability, which was experimentally confirmed in cultured patient cells, with mitochondrial translation defect and lacking EFTs. Only a single TSFM mutation has been previously described in different populations, leading to an infantile fatal multisystem disorder with cardiomyopathy. Sequence data from 35,000 Finnish population controls indicated that the heterozygous carrier frequency of p.Q286X change was exceptionally high in Finland, 1:80, but no homozygotes were found in the population, in our mitochondrial disease patient collection, or in an intrauterine fetal death material, suggesting early developmental lethality of the homozygotes.CONCLUSIONS: We show that in addition to early-onset cardiomyopathy, TSFM mutations should be considered in childhood and juvenile encephalopathies with optic and/or peripheral neuropathy, ataxia, or Leigh disease.
    Neurology 07/2014; DOI:10.1212/WNL.0000000000000716 · 8.30 Impact Factor