Article

Dual Effects of Isoflurane on Proliferation, Differentiation, and Survival in Human Neuroprogenitor Cells

and Department of Anesthesiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China. ‡ Research Specialist, Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. § Research Visiting Scholar, Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
Anesthesiology (Impact Factor: 6.17). 01/2013; 118(3). DOI: 10.1097/ALN.0b013e3182833fae
Source: PubMed

ABSTRACT BACKGROUND:: Previous studies have demonstrated that isoflurane can provide both neuroprotection and neurotoxicity in various tissue culture models and in rodent developing brains. The cellular and molecular mechanisms mediating these dual effects are not clear, but the exposure level and duration of isoflurane appear to be determinant factors. METHODS:: Using the ReNcell CX (Millipore, Billerica, MA) human neural progenitor cell line, the authors investigated the impact of prolonged exposure to varying isoflurane concentrations on cell survival and neurogenesis. In addition, the authors assessed the impact of short isoflurane preconditioning on elevation of cytosolic Ca concentration and cytotoxic effects mediated by prolonged isoflurane exposures and the contribution of inositol-1,4,5-trisphosphate or ryanodine receptor activation to these processes. RESULTS:: Short exposures to low isoflurane concentrations promote proliferation and differentiation of ReNcell CX cells, with no cell damage. However, prolonged exposures to high isoflurane concentrations induced significant ReNcell CX cell damage and inhibited cell proliferation. These prolonged exposures suppressed neuronal cell fate and promoted glial cell fate. Preconditioning of ReNcell CX cultures with short exposures to low concentrations of isoflurane ameliorated the effects of prolonged exposures to isoflurane. Pretreatment of ReNcell cultures with inositol-1,4,5-trisphosphate or ryanodine receptor antagonists mostly prevented isoflurane-mediated effects on survival, proliferation, and differentiation. Finally, isoflurane-preconditioned cultures showed significantly less isoflurane-evoked changes in calcium concentration. CONCLUSION:: The commonly used general anesthetic isoflurane exerts dual effects on neuronal stem cell survival, proliferation, and differentiation, which may be attributed to differential regulation of calcium release through activation of endoplasmic reticulum localized inositol-1,4,5-trisphosphate and/or ryanodine receptors.

0 Followers
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4-6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks. © The Author(s) 2015.
    ASN Neuro 04/2015; 7(2). DOI:10.1177/1759091415575845 · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: La clase terapéutica de los agentes halogenados que se utilizan en anestesia engloba el halotano y el enflurano, que se han abandonado para dejar paso a los agentes más recientes: el isoflurano, el sevoflurano y el desflurano, que son menos solubles en los tejidos y se toleran mejor por el sistema cardiovascular. Las diferencias farmacodinámicas entre estos tres agentes son modestas y su toxicidad se puede considerar casi nula, incluso en el caso del sevoflurano, a pesar de su degradación en compuesto A (que es nefrotóxico) por las bases fuertes contenidas en la cal sodada. Varios datos recientes implican a los halogenados en trastornos de las adquisiciones cognitivas en la infancia. El sevoflurano y el desflurano, que son los agentes más recientes, se caracterizan por una cinética más rápida. Las ventajas clínicas derivadas de ello (rapidez de la inducción y del despertar, así como mayor manejabilidad) deben sopesarse frente a su coste cuatro veces mayor que el del isoflurano. Por lo tanto, estos dos agentes deben utilizare prioritariamente en circuito cerrado, con un flujo de gas fresco lo más reducido posible. La reducción del flujo de gas fresco no disminuye en absoluto la manejabilidad de los agentes menos solubles como el desflurano. Los nuevos respiradores que se han introducido en el mercado permiten la administración de los halogenados según un objetivo de concentración, hacen posible un ahorro de agentes halogenados y una disminución de la carga de trabajo. El sevoflurano, menos irritante, puede utilizarse para la inducción con mascarilla tanto en adultos como en niños. Los efectos hemodinámicos, así como la aparición ocasional de una actividad epileptiforme durante la utilización de esta técnica requieren una evaluación más detallada en algunos grupos de pacientes.
    11/2014; 40(4). DOI:10.1016/S1280-4703(14)68945-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: General anesthesia in patients with or at risk for neuronal injury remains challenging due to the controversial influence of volatile anesthetics on neuronal damage. We hypothesized that isoflurane, sevoflurane, and desflurane would exert variable degrees of neurotoxicity in vitro and in vivo via activation of the p75 neurotrophin receptor (p75).
    Anesthesia and analgesia 12/2014; 119(6):1429. DOI:10.1213/ANE.0000000000000488 · 3.42 Impact Factor