Article

ISA-TAB-Nano: A Specification for Sharing Nanomaterial Research Data in Spreadsheet-based Format.

BMC Biotechnology (Impact Factor: 2.59). 01/2013; 13(1):2. DOI: 10.1186/1472-6750-13-2
Source: PubMed

ABSTRACT Background and motivation: The high-throughput genomics communities have been successfully using standardized spreadsheet-based formats to capture and share data within labs and among public repositories. The nanomedicine community has yet to adopt similar standards to share the diverse and multi-dimensional types of data (including metadata) pertaining to the description and characterization of nanomaterials. Owing to the lack of standardization in representing and sharing nanomaterial data, most of the data currently shared via publications and data resources are incomplete, poorly-integrated, and not suitable for meaningful interpretation and re-use of the data. Specifically, in its current state, data cannot be effectively utilized for the development of predictive models that will inform the rational design of nanomaterials. RESULTS: We have developed a specification called ISA-TAB-Nano, which comprises four spreadsheet-based file formats for representing and integrating various types of nanomaterial data. Three file formats (Investigation, Study, and Assay files) have been adapted from the established ISA-TAB specification; while the Material file format was developed de novo to more readily describe the complexity of nanomaterials and associated small molecules. In this paper, we have discussed the main features of each file format and how to use them for sharing nanomaterial descriptions and assay metadata. CONCLUSION: The ISA-TAB-Nano file formats provide a general and flexible framework to record and integrate nanomaterial descriptions, assay data (metadata and endpoint measurements) and protocol information. Like ISA-TAB, ISA-TAB-Nano supports the use of ontology terms to promote standardized descriptions and to facilitate search and integration of the data. The ISA-TAB-Nano specification has been submitted as an ASTM work item to obtain community feedback and to provide a nanotechnology data-sharing standard for public development and adoption.

Download full-text

Full-text

Available from: Nathan Andrew Baker, Jun 24, 2015
1 Follower
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing recognition that some nanomaterials may pose a risk to human health and the environment. Moreover, the industrial use of the novel engineered nanomaterials (ENMs) increases at a higher rate than data generation for hazard assessment; consequently, many of them remain untested. The large number of nanomaterials and their variants (e.g., different sizes and coatings) requiring testing and the ethical pressure towards nonanimal testing means that in a first instance, expensive animal bioassays are precluded, and the use of (quantitative) structure–activity relationships ((Q)SARs) models as an alternative source of (screening) hazard information should be explored. (Q)SAR modelling can be applied to contribute towards filling important knowledge gaps by making best use of existing data, prioritizing the physicochemical parameters driving toxicity, and providing practical solutions for the risk assessment problems caused by the diversity of ENMs. This paper covers the core components required for successful application of (Q)SAR methods to ENM toxicity prediction, summarizes the published nano-(Q)SAR studies, and outlines the challenges ahead for nano-(Q)SAR modelling. It provides a critical review of (1) the present availability of ENM characterization/toxicity data, (2) the characterization of nanostructures that meet the requirements for (Q)SAR analysis, (3) published nano-(Q)SAR studies and their limitations, (4) in silico tools for (Q)SAR screening of nanotoxicity, and (5) prospective directions for the development of nano-(Q)SAR models.
    Particuology 06/2015; 21:1-19. DOI:10.1016/j.partic.2014.12.001 · 1.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The possibility of building up predictive model for cytotoxicity of SiO2-nanoparticles (SiO2-NPs) by means of so-called optimal descriptors which are mathematical functions of size and concentration of SiO2-NPs is demonstrated with data on sixteen systems’ “size–concentration.” The calculation has been carried out by means of the CORAL software (http://www.insilico.eu/coral/). The statistical quality of the best model for the cytotoxic inhibition ratio (%) of human lung fibroblasts cultured in the media containing different concentrations of SiO2‐NPs which is measured by MTT assay is the following: n = 10, r 2 = 0.9837, s = 2.53 %, F = 483 (training set) and n = 6, r 2 = 0.9269, s = 7.94 % (test set). The perspectives of this approach are discussed.
    Journal of Nanoparticle Research 02/2014; 16(2). DOI:10.1007/s11051-014-2282-9 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scientific reproducibility has been at the forefront of many news stories and there exist numerous initiatives to help address this problem. We posit that a contributor is simply a lack of specificity that is required to enable adequate research reproducibility. In particular, the inability to uniquely identify research resources, such as antibodies and model organisms, makes it difficult or impossible to reproduce experiments even where the science is otherwise sound. In order to better understand the magnitude of this problem, we designed an experiment to ascertain the "identifiability" of research resources in the biomedical literature. We evaluated recent journal articles in the fields of Neuroscience, Developmental Biology, Immunology, Cell and Molecular Biology and General Biology, selected randomly based on a diversity of impact factors for the journals, publishers, and experimental method reporting guidelines. We attempted to uniquely identify model organisms (mouse, rat, zebrafish, worm, fly and yeast), antibodies, knockdown reagents (morpholinos or RNAi), constructs, and cell lines. Specific criteria were developed to determine if a resource was uniquely identifiable, and included examining relevant repositories (such as model organism databases, and the Antibody Registry), as well as vendor sites. The results of this experiment show that 54% of resources are not uniquely identifiable in publications, regardless of domain, journal impact factor, or reporting requirements. For example, in many cases the organism strain in which the experiment was performed or antibody that was used could not be identified. Our results show that identifiability is a serious problem for reproducibility. Based on these results, we provide recommendations to authors, reviewers, journal editors, vendors, and publishers. Scientific efficiency and reproducibility depend upon a research-wide improvement of this substantial problem in science today.
    09/2013; 1:e148. DOI:10.7717/peerj.148