Article

IL-11 produced by breast cancer cells augments osteoclastogenesis by sustaining the pool of osteoclast progenitor cells

BMC Cancer (Impact Factor: 3.32). 01/2013; 13(1):16. DOI: 10.1186/1471-2407-13-16
Source: PubMed

ABSTRACT BACKGROUND: Interleukin (IL)-11, a cytokine produced by breast cancer, has been implicated in breast cancer-induced osteolysis (bone destruction) but the mechanism(s) of action remain controversial. Some studies show that IL-11 is able to promote osteoclast formation independent of the receptor activator of NF-kappaB ligand (RANKL), while others demonstrate IL-11 can induce osteoclast formation by inducing osteoblasts to secrete RANKL. This work aims to further investigate the role of IL-11 in metastasis-induced osteolysis by addressing a new hypothesis that IL-11 exerts effects on osteoclast progenitor cells. METHODS: To address the precise role of breast cancer-derived IL-11 in osteoclastogenesis, we determined the effect of breast cancer conditioned media on osteoclast progenitor cells with or without an IL-11 neutralizing antibody. We next investigated whether recombinant IL-11 exerts effects on osteoclast progenitor cells and survival of mature osteoclasts. Finally, we examined the ability of IL-11 to mediate osteoclast formation in tissue culture dishes and on bone slices in the absence of RANKL, with suboptimal levels of RANKL, or from RANKL-pretreated murine bone marrow macrophages (BMMs). RESULTS: We found that freshly isolated murine bone marrow cells cultured in the presence of breast cancer conditioned media for 6 days gave rise to a population of cells which were able to form osteoclasts upon treatment with RANKL and M-CSF. Moreover, a neutralizing anti-IL-11 antibody significantly inhibited the ability of breast cancer conditioned media to promote the development and/or survival of osteoclast progenitor cells. Similarly, recombinant IL-11 was able to sustain a population of osteoclast progenitor cells. However, IL-11 was unable to exert any effect on osteoclast survival, induce osteoclastogenesis independent of RANKL, or promote osteoclastogenesis in suboptimal RANKL conditions. CONCLUSIONS: Our data indicate that a) IL-11 plays an important role in osteoclastogenesis by stimulating the development and/or survival of osteoclast progenitor cells and b) breast cancer may promote osteolysis in part by increasing the pool of osteoclast progenitor cells via tumor cell-derived IL-11. However, given the heterogeneous nature of the bone marrow cells, the precise mechanism by which IL-11 treatment gives rise to a population of osteoclast progenitor cells warrants further investigation.

0 Bookmarks
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone metastasis accounts for the vast majority of breast cancer (BC) metastases, and is related to a high rate of morbidity and mortality. A number of seminal studies have uncovered gene expression signatures involved in BC development and bone metastasis; each of them points at a distinct step of the 'invasion-metastasis cascade'. In this review, we provide most recently discovered functions of sets of genes that are selected from widely accepted gene signatures that are implicate in BC progression and bone metastasis. We propose a possible sequential pattern of gene expression that may lead a benign primary breast tumor to get aggressiveness and progress toward bone metastasis. A panel of genes which primarily deal with features like DNA replication, survival, proliferation, then, angiogenesis, migration, and invasion has been identified. TGF-β, FGF, NFκB, WNT, PI3K, and JAK-STAT signaling pathways, as the key pathways involved in breast cancer development and metastasis, are evidently regulated by several genes in all three signatures. Epithelial to mesenchymal transition that is also an important mechanism in cancer stem cell generation and metastasis is evidently regulated by these genes. This review provides a comprehensive insight regarding breast cancer bone metastasis that may lead to a better understanding of the disease and take step toward better treatments.
    Clinical and Experimental Metastasis 02/2014; · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Periodontitis and other bone loss diseases, decreasing bone volume and strength, have a significant impact on millions of people with the risk of tooth loss and bone fracture. The integrity and strength of bone are maintained through the balance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively, so the loss of bone results from the disruption of such balance due to increased resorption or/and decreased formation of bone. The goal of therapies for diseases of bone loss is to reduce bone loss, improve bone formation, and then keep healthy bone density. Current therapies have mostly relied on long-term medication, exercise, anti-inflammatory therapies, and changing of the life style. However there are some limitations for some patients in the effective treatments for bone loss diseases because of the complexity of bone loss. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine, and recent studies have indicated that IL-10 can contribute to the maintenance of bone mass through inhibition of osteoclastic bone resorption and regulation of osteoblastic bone formation. This paper will provide a brief overview of the role of IL-10 in bone loss diseases and discuss the possibility of IL-10 adoption in therapy of bone loss diseases therapy.
    BioMed research international. 01/2014; 2014:284836.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Runx2, a master regulator of osteogenesis, is abnormally expressed in advanced prostate cancer. Here we addressed Runx2 contribution to formation of prostate cancer-related osteolytic and osteoblastic bone lesions by mediating TGFβ/BMP signaling through direct interaction with Smads. Further, we examined involvement of the Runx2-Smad complex in mediating tumor growth and distal metastasis. To identify Runx2-Smad specific mechanisms of prostate tumor activity in bone, we generated PC3 prostate cancer cell lines expressing Runx2-WT or one of two mutant proteins (Runx2-HTY and Runx2-ΔC) that each disrupt the Runx2-Smad interaction, either directly through a point mutation or by deletion of the functional C-terminus, respectively. Intratibial tumors generated from these cells revealed that Runx2-WT expressing cells resulted in predominantly osteolytic disease, while cells expressing mutant proteins exhibited tumors with mixed osteolytic/osteoblastic lesions. Extent of bone loss and of woven bone formation was assessed by radiography and micro-computed tomography. Bioluminescent imaging showed the presence of labeled prostate cancer cells in the lung at the latest time point examined, with Runx2-WT group exhibiting increased incidence of tumor cells in lung. Notably, disruption of the Runx2-Smad interaction significantly reduced incidence and size of lung tumors. Altered expression of Runx2 target genes involved in invasion, growth, adhesion and metastasis supported our findings. Thus, our studies demonstrate that Runx2 in prostate cancer cells plays a significant role in intratibial prostate cancer-related tumor growth and bone loss through mechanisms mediated by the Runx2-Smad signaling pathway. This work expands upon the potential importance of Runx2 as a therapeutic target in cancer. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 07/2014; 136(6). · 6.20 Impact Factor

Preview

Download
0 Downloads
Available from