Article

Phosphine-Quenching of Cyanine Dyes as a Versatile Tool for Fluorescence Microscopy.

Journal of the American Chemical Society (Impact Factor: 11.44). 01/2013; DOI: 10.1021/ja3105279
Source: PubMed

ABSTRACT We report that the cyanine dye Cy5 and several of its structural relatives are reversibly quenched by the phosphine TCEP (tris(2-carboxyethyl)phosphine). Using Cy5 as a model, we show that the quenching reaction occurs by 1,4-addition of the phosphine to the polymethine bridge of Cy5 to form a covalent adduct. Illumination with ultraviolet light dissociates the adduct and returns the dye to the fluorescent state. We demonstrate that TCEP quenching can be used for superresolution imaging as well as for other applications, such as differentiating between molecules inside and outside the cell.

0 Bookmarks
 · 
163 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Light microscopy has undergone a revolution with the advent of super-resolution microscopy methods that can surpass the diffraction limit. These methods have generated much enthusiasm, in particular with regards to the new possibilities they offer for biological imaging. The recent years have seen a great advancement both in terms of new technological developments and exciting biological applications. Here, we review some of the important milestones in the field and highlight some recent biological applications. Microsc. Res. Tech., 2014. © 2014 Wiley Periodicals, Inc.
    Microscopy Research and Technique 02/2014; · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photoswitchable fluorescent probes are key elements of newly developed super-resolution fluorescence microscopy techniques that enable far-field interrogation of biological systems with a resolution of 50 nm or better. In contrast to most conventional fluorescence imaging techniques, the performance achievable by most super-resolution techniques is critically impacted by the photoswitching properties of the fluorophores. Here we review photoswitchable fluorophores for super-resolution imaging with discussion of the fundamental principles involved, a focus on practical implementation with available tools, and an outlook on future directions.
    FEBS Letters 07/2014; · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photothermal therapy (PTT), as a minimally invasive and highly effective cancer treatment approach, has received widespread attention in recent years. Tremendous effort has been devoted to explore various types of photothermal agents with high near‐infrared (NIR) absorbance for PTT cancer treatment. Despite many exciting progresses in the area, effective yet safe photothermal agents with good biocompatibility and biodegradability are still highly desired. In this work, a new organic PTT agent based on polyethylene glycol (PEG) coated micelle nanoparticles encapsulating a heptamethine indocyanine dye IR825 is developed, showing a strong NIR absorption band and a rather low quantum yield, for in vivo photothermal treatment of cancer. It is found that the IR825–PEG nanoparticles show ultra‐high in vivo tumor uptake after intravenous injection, and appear to be an excellent PTT agent for tumor ablation under a low‐power laser irradiation, without rendering any appreciable toxicity to the treated animals. Compared with inorganic nanomaterials and conjugated polymers being explored in PTT, the NIR‐absorbing micelle nanoparticles presented here may have the least safety concern while showing excellent treatment efficacy, and thus may be a new photothermal agent potentially useful in clinical applications.
    Advanced Functional Materials 12/2013; 23(47). · 10.44 Impact Factor