Full Spectroscopic Tip-Enhanced Raman Imaging of Single Nanotapes Formed from Beta-Amyloid(1-40) Peptide Fragments.

ACS Nano (Impact Factor: 12.03). 01/2013; 7(2). DOI: 10.1021/nn305677k
Source: PubMed

ABSTRACT This study demonstrates that spectral fingerprint patterns for a weakly scattering biological sample can be obtained reproducibly and reliably with tip-enhanced Raman spectroscopy (TERS) that correspond well with the conventional confocal Raman spectra collected for the bulk substance. These provided the basis for obtaining TERS images of individual self-assembled peptide nanotapes using an automated, objective procedure that correlate with the simultaneously obtained scanning tunneling microscopy (STM) images. TERS and STM images (64x64 pixels, 3x3 μm2) of peptide nanotapes are presented that rely on marker bands in the Raman fingerprint region. Full spectroscopic information in every pixel was obtained allowing post-processing of data and identification of species of interest. Experimentally, the "gap-mode" TERS configuration was used with a solid metal (Ag) tip in feedback with a metal substrate (Au). Confocal Raman data of bulk nanotapes, TERS point measurements with longer acquisition time, atomic force microscopy images, and an infrared absorption spectrum of bulk nanotapes were recorded for comparison. It is shown that the unique combination of topographic and spectroscopic data that TERS imaging provides reveals differences between the STM and TERS images, e.g. nanotapes that are only weakly visible in the STM images, a coverage of the surface with an unknown substance, and the identification of a patch as a protein assembly that could not be unambiguously assigned based on the STM image alone.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.
    Optics Express 07/2014; 22(15). DOI:10.1364/OE.22.017948 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tip-enhanced Raman spectroscopy (TERS) has experienced tremendous growth in the last 5 years. Specifically, TER imaging has provided invaluable insight into the spatial distribution and properties of chemical species on a surface with spatial resolution that is otherwise unattainable by any other analytical method. Additionally, there has been further development in coupling ultrafast spectroscopy with TERS in the hope of obtaining both ultrafast temporal and nanometer-scale spatial resolution. In this Perspective, we discuss several recent advances in TERS, specifically highlighting those in the areas of TER imaging and integrating ultrafast spectroscopy with TERS.
    Journal of Physical Chemistry Letters 09/2014; 5(18):3125-3130. DOI:10.1021/jz5015746 · 6.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular chirality is introduced at liquid–solid interfaces. A ring-like aggregation of amyloid Aβ(1–40) on N-isobutyryl-L-cysteine (L-NIBC)-modified gold substrate occurs at low Aβ(1–40) concentration, while D-NIBC modification only results in rod-like aggregation. Utilizing atomic force microscope controlled tip-enhanced Raman scattering, we directly observe the secondary structure information for Aβ(1–40) assembly in situ at the nanoscale. D- or L-NIBC on the surface can guide parallel or nonparallel alignment of β-hairpins through a two-step process based on electrostatic-interaction-enhanced adsorption and subsequent stereoselective recognition. Possible electrostatic interaction sites (R5 and K16) and a chiral recognition site (H14) of Aβ(1–40) are proposed, which may provide insight into the understanding of this effect.
    Angewandte Chemie International Edition 12/2014; 54(7). DOI:10.1002/anie.201410768 · 11.34 Impact Factor