CdTe nanoparticles display tropism to core histones and histone-rich cell organelles.

Department of Clinical Medicine, Trinity College Dublin, Dublin 2, Ireland.
Small (Impact Factor: 7.82). 11/2008; 4(11):2006-15. DOI: 10.1002/smll.200800088
Source: PubMed

ABSTRACT The disclosure of the mechanisms of nanoparticle interaction with specific intracellular targets represents one of the key tasks in nanobiology. Unmodified luminescent semiconductor nanoparticles, or quantum dots (QDs), are capable of a strikingly rapid accumulation in the nuclei and nucleoli of living human cells, driven by processes of yet unknown nature. Here, it is hypothesized that such a strong tropism of QDs could be mediated by charge-related properties of the macromolecules presented in the nuclear compartments. As the complex microenvironment encountered by the QDs in the nuclei and nucleoli of live cells is primarily presented by proteins and other biopolymers, such as DNA and RNA, the model of human phagocytic cell line THP1, nuclear lysates, purified protein, and nucleic acid solutions is utilized to investigate the interactions of the QDs with these most abundant classes of intranuclear macromolecules. Using a combination of advanced technological approaches, including live cell confocal microscopy, fluorescent lifetime imaging (FLIM), spectroscopic methods, and zeta potential measurements, it is demonstrated that unmodified CdTe QDs preferentially bind to the positively charged core histone proteins as opposed to the DNA or RNA, resulting in a dramatic shift off the absorption band, and a red shift and decrease in the pholuminescence (PL) intensity of the QDs. FLIM imaging of the QDs demonstrates an increased formation of QD/protein aggregates in the presence of core histones, with a resulting significant reduction in the PL lifetime. FLIM technology for the first time reveals that the localization of negatively charged QDs to their ultimate nuclear and nucleolar destinations dramatically affects the QDs' photoluminescence lifetimes, and offers thereby a sensitive readout for physical interactions between QDs and their intracellular macromolecular targets. These findings strongly suggest that charge-mediated QD/histone interactions could provide the basis for QD nuclear localization downstream of intracellular transport mechanisms.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of nanoparticles (NPs) has improved the quality of many industrial, pharmaceutical, and medical products. Increased surface reactivity, a major reason for the positive effects of NPs, may, on the other hand, also cause adverse biological effects. Almost all non-biodegradable NPs cause cytotoxic effects but employ quite different modes of action. The relation of biodegradable or loaded NPs to cytotoxic mechanism is more difficult to identify because effects may by caused by the particles or degradation products thereof. This review introduces problems of NPs in conventional cytotoxicity testing (changes of particle parameters in biological fluids, cellular dose, cell line and assay selection). Generation of reactive oxygen and nitrogen species by NPs and of metal ions due to dissolution of the NPs is discussed as a cause for cytotoxicity. The effects of NPs on plasma membrane, mitochondria, lysosomes, nucleus, and intracellular proteins as cellular targets for cytotoxicity are summarized. The comparison of the numerous studies on the mechanism of cellular effects shows that, although some common targets have been identified, other effects are unique for particular NPs or groups of NPs. While titanium dioxide NPs appear to act mainly by generation of reactive oxygen and nitrogen species, biological effects of silver and iron oxide are caused by both reactive species and free metal ions. NPs lacking heavy metals, such as carbon nanotubes and polystyrene particles, interfere with cell metabolism mainly by binding to macromolecules.
    Current Drug Metabolism 11/2013; 14(9):976-88. · 4.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While the use of quantum dot (QD) nanoparticles for bioimaging and sensing has been improved and exploited during the last several years, most studies have used emission intensity-based techniques. Fluorescence lifetime imaging microscopy (FLIM) can also be employed for sensing purposes, overcoming many of the limitations of the aforementioned systems. Herein, we show that the photoluminescence (PL) lifetime of mercaptopropionic acid-capped QDs (MPA-QDs) collected from FLIM images can be used to determine intracellular pH. The PL average lifetime of MPA-QDs varied from 8.7 ns (pH < 5) to 15.4 ns (pH > 8) in media mimicking the intracellular environment. These long decay times of QD nanoparticles make them easily distinguishable from intrinsic cell autofluorescence, improving selectivity in sensing applications. We demonstrate, for the first time, the successful detection of changes in the intracellular pH of different cell types by examining the PL decay time of QDs. In particular, the combination of FLIM methodologies with QD nanoparticles exhibits greatly improved sensitivity compared with other fluorescent dyes for pH imaging. A detailed description of the advantages of the FLIM technique is presented.
    ACS Nano 06/2013; · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are small 22-25 nucleotides long non-coding RNAs, that are conserved during evolution, and control gene expression in metazoan animals, plants, viruses, and bacteria primarily at post-transcriptional and transcriptional levels. MiRNAs ultimately regulate target gene expression by degrading the corresponding mRNA and/or inhibiting their translation. Currently, the critical functions of miRNAs have been established in regulating immune system, cell proliferation, differentiation and development, cancer and cell cycle by as yet unknown control mechanism. MiRNAs play an essential role in malignancy, and as tumour suppressors and oncogenes. Thus, discovery of new miRNAs will probably change the landscape of cancer genetics. Significantly different miRNA profiles can be assigned to various types of tumours, which could serve as phenotypic signatures for different cancers for their exploitation in cancer diagnostics, prognostics and therapeutics. If miRNA profiles can accurately predict malignancies, this technology could be exploited as a tool to surmount the diagnostic challenges. This review provides comprehensive and systematic information on miRNA biogenesis and their implications in human health.
    The Indian Journal of Medical Research 04/2013; 137(4):680-694. · 2.06 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014