Article

Titanium levels in the organs and blood of rats with a titanium implant, in the absence of wear, as determined by double-focusing ICP-MS.

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
Analytical and Bioanalytical Chemistry (Impact Factor: 3.66). 11/2008; 393(1):335-43. DOI: 10.1007/s00216-008-2449-2
Source: PubMed

ABSTRACT Titanium (Ti) has long been regarded as an inert and biocompatible metal, ideal for biomedical applications such as dental implants or joint replacements. However, concerns about the biocompatibility of Ti have lately arisen. Unfortunately, information on reliable Ti baseline physiological levels in blood and organ tissues is still pending and the real effects of physiological corrosion as opposed to wear processes of Ti or Ti alloys implants is controversial so far. In this work a previously developed and validated methodology, based on using double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) has been used to establish Ti basal levels in blood and organs (heart, liver, spleen, kidneys, and lungs) of Wistar rats. These data were compared with the levels found in three Wistar rats implanted with a Ti wire embedded in their femur for 18 months, in order to assign possible Ti released purely due to non-wear physiological mechanisms. Results showed that Ti content in all the selected organ tissues and blood was higher than previously determined Ti basal levels, clearly showing both corrosion of the Ti implant and systemic Ti accumulation in target tissues. These results indicate that Ti metal corrosion occurs. This seems to be the only mechanism responsible in the long term for the observed passive dissolution of Ti of the implant in the absence of wear. A comparative study of the systemic distribution of the soluble and particulate Ti potentially released from Ti implants was also carried out by intraperitoneally injection of soluble Ti(citrate)(3) and insoluble TiO(2) particles, respectively. Different systemic Ti storage was observed. Whereas soluble Ti was rapidly transported to all distal organs under study, TiO(2) particles were only accumulated in lung tissue.

0 Bookmarks
 · 
171 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanosized titanium dioxide (TiO2) is one of the most interesting and valuable nanomaterials for the construction industry but also in health care applications, food, and consumer goods, e.g., cosmetics. Therefore, the properties associated with this material are described in detail. Despite its widespread use, the analytical determination and characterization of nanosized metal oxides is not as straightforward as the comparatively easy-to-detect metallic nanoparticles (e.g., silver or gold). This study presents the method development and the results of the determination of tissue titanium (Ti) levels after treatment of rats with the nanosized TiO2. Total Ti levels were chosen to evaluate the presence and distribution of TiO2 nanoparticles. A procedure consisting of incubation with a mixture of nitric acid (HNO3) and hydrofluoric acid (HF), and heating was developed to digest tissues and TiO2 nanomaterials in order to determine the total Ti content by inductively coupled plasma mass spectrometry (ICPMS). For the inter-laboratory comparison, altogether four laboratories analyzed the same samples upon digestion using the available ICPMS equipment. A major premise for any toxicokinetic study is the possibility to detect the chemical under investigation in biological samples (tissues). So, the study has to be performed with a dose high enough to allow for subsequent tissue level measurement of the chemical under investigation. On the other hand, dose of the chemical applied should not induce over toxicity in the animal as this may affect its absorption, distribution, metabolism, and excretion. To determine a non-toxic TiO2 dosage, an acute toxicity study in rats was performed, and the organs obtained were evaluated for the presence of Ti by ICPMS. Despite the differences in methodology and independent of the sample preparation and the ICPMS equipment used, the results obtained for samples with Ti concentrations >4 μg Ti/g tissue agreed well.
    Analytical and Bioanalytical Chemistry 01/2014; · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Measurement of serum metal ion levels is used to determine systemic exposure to implant-derived metal debris that may be generated by processes of wear and corrosion. The aim of this study is to investigate predictors of serum metal ion levels in children undergoing instrumented spinal arthrodesis using a titanium alloy, focusing on implant characteristics and instrumentation construct design variables. This prospective longitudinal cohort study involved 33 children. Serum samples were obtained pre-operatively and at five defined interval periods over the first two post-operative years. Samples were analysed using high-resolution inductively coupled plasma mass spectrometry to measure titanium, niobium and aluminium concentrations. Instrumentation characteristics were catalogued and construct surface area (SA) measurements calculated using an implant-specific software algorithm tool. Significantly elevated levels of serum titanium and niobium were observed (p < 0.0001), with >95 % of post-operative levels abnormally elevated. Significant predictors of serum titanium and niobium levels included time since surgery, surgical procedure (posterior or anterior fusion), number of levels fused, number of pedicle screws inserted, total rod length, total metal SA, total exposed metal SA and total metal-on-metal SA. All significant instrumentation variables were highly correlated. There is a strong relationship between implant SA and both serum titanium and niobium levels. The direct clinical implications of these findings for patients are uncertain, but remain of concern. Surgeons should be aware of the strong correlation between implant surface area of the chosen construct and the subsequent serum metal ion levels.
    European Spine Journal 03/2014; · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ti is frequently used in implants and prostheses and it has been shown before that the presence of these in the human body can lead to elevated Ti concentrations in body fluids such as serum and urine. As identification of the exact mechanisms responsible for this increase in Ti concentrations, and the risks associated with it, are not fully understood, it is important to have sound analytical methods that enable straightforward quantification of Ti levels in body fluids (for both implanted and non-implanted individuals). Until now, only double-focusing sector field ICP-mass spectrometry (SF-ICP-MS) offered limits of detection that are good enough to deal with the very low basal levels of Ti in human serum. This work reports on the development of a novel method for the accurate and precise determination of trace levels of Ti in human serum samples, based on the use of ICP-MS/MS. O2 and NH3/He have been compared as reaction gases. While the use of O2 did not enable to overcome all spectral interferences, it has been shown that conversion of Ti(+) ions into Ti(NH3)6(+) cluster ions by using NH3/He as a reaction gas in an ICP-QQQ-MS system, operated in MS/MS mode, provided interference-free conditions and sufficiently low limits of detection, down to 3ngL(-1) (instrumental detection limit obtained for the most abundant Ti isotope). The accuracy of the method proposed was evaluated by analysis of a Seronorm Trace Elements Serum L-1 reference material and by comparing the results obtained with those achieved by means of SF-ICP-MS. As a proof-of-concept, the newly developed method was successfully applied to the determination of Ti in serum samples obtained from individuals with and without Ti-based implants. All results were found to be in good agreement with those obtained by means of SF-ICP-MS. The typical basal Ti level in human serum was found to be <1μgL(-1), while values in the range of 2-6μgL(-1) were observed for implanted patients.
    Analytica chimica acta 01/2014; 809:1-8. · 4.31 Impact Factor

Full-text

View
1 Download
Available from