Article

A machine learning approach for identifying anatomical locations of actionable findings in radiology reports.

The University of Texas at Dallas, Richardson, TX.
AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium 01/2012; 2012:779-88.
Source: PubMed

ABSTRACT Recognizing the anatomical location of actionable findings in radiology reports is an important part of the communication of critical test results between caregivers. One of the difficulties of identifying anatomical locations of actionable findings stems from the fact that anatomical locations are not always stated in a simple, easy to identify manner. Natural language processing techniques are capable of recognizing the relevant anatomical location by processing a diverse set of lexical and syntactic contexts that correspond to the various ways that radiologists represent spatial relations. We report a precision of 86.2%, recall of 85.9%, and F(1)-measure of 86.0 for extracting the anatomical site of an actionable finding. Additionally, we report a precision of 73.8%, recall of 69.8%, and F(1)-measure of 71.8 for extracting an additional anatomical site that grounds underspecified locations. This demonstrates promising results for identifying locations, while error analysis reveals challenges under certain contexts. Future work will focus on incorporating new forms of medical language processing to improve performance and transitioning our method to new types of clinical data.

0 Followers
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To research computational methods for discovering body site and severity modifiers in clinical texts. We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich linguistic features to represent the pairs of relation arguments and delegate the decision about the nature of the relationship between them to a support vector machine model. We evaluate our models using two corpora that annotate body site and severity modifiers. We also compare the model performance to a number of rule-based baselines. We conduct cross-domain portability experiments. In addition, we carry out feature ablation experiments to determine the contribution of various feature groups. Finally, we perform error analysis and report the sources of errors. The performance of our method for discovering body site modifiers achieves F1 of 0.740-0.908 and our method for discovering severity modifiers achieves F1 of 0.905-0.929. Results indicate that both methods perform well on both in-domain and out-domain data, approaching the performance of human annotators. The most salient features are token and named entity features, although syntactic dependency features also contribute to the overall performance. The dominant sources of errors are infrequent patterns in the data and inability of the system to discern deeper semantic structures. We investigated computational methods for discovering body site and severity modifiers in clinical texts. Our best system is released open source as part of the clinical Text Analysis and Knowledge Extraction System (cTAKES).
    Journal of the American Medical Informatics Association 10/2013; 21(3). DOI:10.1136/amiajnl-2013-001766 · 3.93 Impact Factor

Kirk E Roberts