Chronic ouabain treatment induces vasa recta endothelial dysfunction in the rat.

Department of Medicine, UMMS, Baltimore, MD 21201, USA.
American journal of physiology. Renal physiology (Impact Factor: 3.3). 11/2008; 296(1):F98-F106. DOI: 10.1152/ajprenal.90429.2008
Source: PubMed

ABSTRACT Descending vasa recta (DVR) are 15-microm vessels that perfuse the renal medulla. Ouabain has been shown to augment DVR endothelial cytoplasmic Ca(2+) ([Ca(2+)](CYT)) signaling. In this study, we examined the expression of the ouabain-sensitive Na-K-ATPase alpha2 subunit in the rat renal vasculature and tested effects of acute ouabain exposure and chronic ouabain treatment on DVR. Immunostaining with antibodies directed against the alpha2 subunit verified its expression in both DVR pericytes and endothelium. Acute application of ouabain (100 or 500 nM) augmented the DVR nitric oxide generation stimulated by acetylcholine (ACh; 10 microM). At a concentration of 1 mM, ouabain constricted microperfused DVR, whereas at 100 nM, it was without effect. Acute ouabain (100 nM) did not augment constriction by angiotensin II (0.5 or 10 nM), whereas l-nitroarginine methyl ester-induced contraction of DVR was slightly enhanced. Ouabain-hypertensive (OH) rats were generated by chronic ouabain treatment (30, 5 wk). The acute endothelial [Ca(2+)](CYT) elevation by ouabain (100 nM) was absent in DVR endothelia of OH rats. The [Ca(2+)](CYT) response to 10 nM ACh was also eliminated, whereas the response to 10 microM ACh was not. The endothelial [Ca(2+)](CYT) response to bradykinin (100 nM) was significantly attenuated. We conclude that endothelial responses may offset the ability of acute ouabain exposure to enhance DVR vasoconstriction. Chronic exposure to ouabain, in vivo, leads to hypertension and DVR endothelial dysfunction, manifested as reduced [Ca(2+)](CYT) responses to both ouabain- and endothelium-dependent vasodilators.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The work of deWardener and colleagues stimulated longstanding interest in natriuretic hormones (NHs). In addition to the atrial peptides (APs), the circulation contains unidentified physiologically relevant NHs. One NH is controlled by the central nervous system (CNS) and likely secreted by the pituitary. Its circulating activity is modulated by salt intake and the prevailing sodium concentration of the blood and intracerebroventricular fluid, and contributes to postprandial and dehydration natriuresis. The other NH, mobilized by atrial stretch, promotes natriuresis by increasing the production of intrarenal dopamine and/or nitric oxide (NO). Both NHs have short (<35 min) circulating half lives, depress renotubular sodium transport, and neither requires the renal nerves. The search for NHs led to endogenous cardiotonic steroids (CTS) including ouabain-, digoxin-, and bufadienolide-like materials. These CTS, given acutely in high nanomole to micromole amounts into the general or renal circulations, inhibit sodium pumps and are natriuretic. Among these CTS, only bufalin is cleared sufficiently rapidly to qualify for an NH-like role. Ouabain-like CTS are cleared slowly, and when given chronically in low daily nanomole amounts, promote sodium retention, augment arterial myogenic tone, reduce renal blood flow and glomerular filtration, suppress NO in the renal vasa recta, and increase sympathetic nerve activity and blood pressure. Moreover, lowering total body sodium raises circulating endogenous ouabain. Thus, ouabain-like CTS have physiological actions that, like aldosterone, support renal sodium retention and blood pressure. In conclusion, the mammalian circulation contains two non-AP NHs. Identification of the CNS NH should be a priority.
    Frontiers in Endocrinology 12/2014; 5:199.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ouabain is a cardiac glycoside produced in the adrenal glands and hypothalamus. It affects the function of all cells by binding to Na+/K+-ATPase. Several lines of evidence suggest that endogenous ouabain could be involved in the pathogenesis of essential (particularly, salt-sensitive) hypertension. However, information regarding the postulated hypertensive effect of the long-term administration of low-dose exogenous ouabain is inconsistent. This study was designed to help settle this controversy through the use of telemetric monitoring of arterial blood pressure and to elucidate the ouabain-induced alterations that could either promote or prevent hypertension. Ouabain (63 and 324 µg/kg/day) was administered subcutaneously to male Wistar rats. Radiotelemetry was used to monitor blood pressure, heart rate and measures of cardiovascular variability and baroreflex sensitivity. The continuous administration of ouabain for 3 months did not elevate arterial blood pressure. The low-frequency power of systolic pressure variability, urinary excretion of catecholamines, and cardiovascular response to restraint stress and a high-salt diet as well as the responsiveness to α1-adrenergic stimulation were all unaltered by ouabain administration, suggesting that the activity of the sympathetic nervous system was not increased. However, surrogate indices of cardiac vagal nerve activity based on heart rate variability were elevated. Molecular remodeling in mesenteric arteries that could support the development of hypertension (increased expression of the genes for the Na+/Ca2+ exchanger and Na+/K+-ATPase α2 isoform) was not evident. Instead, the plasma level of vasodilatory calcitonin gene-related peptide (CGRP) significantly rose from 55 (11, SD) in the control group to 89 (20, SD) pg/ml in the ouabain-treated rats (PTukey's = 18.10-5). These data show that long-term administration of exogenous ouabain does not necessarily cause hypertension in rodents. The augmented parasympathetic activity and elevated plasma level of CGRP could be linked to the missing hypertensive effect of ouabain administration.
    PLoS ONE 10/2014; 9(10):e108909. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014