Article

Development of automated brightfield double In Situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence In Situ hybridization (FISH)

Office of Medical Affairs, Ventana Medical Systems Inc., Tucson, AZ, USA.
Diagnostic Pathology (Impact Factor: 2.41). 11/2008; 3:41. DOI: 10.1186/1746-1596-3-41
Source: PubMed

ABSTRACT Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas.
The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark(R) XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H2O2 reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatase (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives.
Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 - 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 - 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 - 1.0000).
Automated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue morphological observation.

Download full-text

Full-text

Available from: Eric Walk, Aug 04, 2015
1 Follower
 · 
359 Views
  • Source
    • "More recently, the CISH (chromogenic in situ hybridization) methodology, approved by FDA, has emerged as a potential alternative to FISH (Rosa et al. 2009). Other new modalities of HER-2 testing are Metallographic In Situ Hybridization (Tubbs et al., 2002; Downs-Kelly et al., 2005) and brightfield double in situ hybridization (Nitta et al., 2008). Current recommendations of the American Society of Clinical Oncology ⁄ College of American Pathologists (ASCO ⁄ CAP) include determination of HER-2 status in all invasive breast cancers using IHC or ISH (García- Caballero et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Considerable attention has been given to the accuracy of HER-2 testing and the correlation between the results of different testing methods. This interest reflects the growing importance of HER-2 status in the management of patients with breast cancer. In this study the detection of HER-2 gene and centromere 17 status was evaluated using dual-colour primed in situ labelling (PRINS) in comparison with fluorescence in situ hybridization (FISH). These two methods were evaluated on a series of 27 formalin fixed paraffin embedded breast carcinoma tumours, previously tested for protein overexpression by HercepTest (grouped into Hercep 1+/0, 2+ and 3+). HER-2 gene amplification (ratio ≥ 2.2) by PRINS was found in 3:3, 6:21 and 0:3 in IHC 3+, 2+ and 1+/0 cases, respectively. Comparing FISH and IHC (immunohistochemistry), showed the same results as for PRINS and IHC. Chromosome 17 aneusomy was found in 10 of 21 IHC 2+ cases (47.6%), of which 1 (10%) showed hypodisomy (chromosome 17 copy number per cell ≤ 1.75), 7 (70%) showed low polysomy (chromosome 17 copy number per cell=2.26 - 3.75) and 2 (20%) showed high polysomy (chromosome 17 copy number per cell ≥ 3.76). The overall concordance of detection of HER-2 gene amplification by FISH and PRINS was 100% (27:27). Furthermore, both the level of HER-2 amplification and copy number of CEN17 analysis results correlated well between the two methods. In conclusion, PRINS is a reliable, reproducible technique and in our opinion can be used as an additional test to determine HER-2 status in breast tumours.
    Asian Pacific journal of cancer prevention: APJCP 01/2012; 13(1):329-37. DOI:10.7314/APJCP.2012.13.1.329 · 2.51 Impact Factor
  • Physica A: Statistical Mechanics and its Applications 01/1975; 81(2):249-275. · 1.72 Impact Factor
  • Value in Health 11/2005; 8(6). DOI:10.1016/S1098-3015(10)67435-9 · 2.89 Impact Factor
Show more