Article

Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans.

Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
PLoS Pathogens (Impact Factor: 8.06). 01/2013; 9(1):e1003101. DOI: 10.1371/journal.ppat.1003101
Source: PubMed

ABSTRACT Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.

Full-text

Available from: Grace Yuen, Mar 08, 2014
0 Followers
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas chlororaphis strain PA23 is a biocontrol agent able to suppress growth of the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces an arsenal of exometabolites including pyrrolnitrin (PRN), phenazine (PHZ), hydrogen cyanide (HCN), and degradative enzymes. Production of these compounds is controlled at both the transcriptional and posttranscriptional levels by the Gac-Rsm system, RpoS, PsrA, and the Phz quorum-sensing system. Beyond pathogen-suppression, the success of a biocontrol agent is dependent upon its ability to establish itself in the environment where predation by bacterivorous organisms, including nematodes, may threaten persistence. The focus of this study was to investigate whether PA23 is able to resist grazing by Caenorhabditis elegans and to define the role played by exoproducts in the bacterial-nematode interaction. We discovered that both PRN and HCN contribute to fast- and slow-killing of C. elegans. HCN is well-established as having lethal effects on C. elegans; however, PRN has not been reported to be nematicidal. Exposure of L4 stage nematodes to purified PRN reduced nematode viability in a dose-dependent fashion and led to reduced hatching of eggs laid by gravid adults. Because bacterial metabolites can act as chemoattractants or repellents, we analyzed whether PA23 exhibited attractant or repulsive properties towards C. elegans. Both PRN and HCN were found to be potent repellents. Next we investigated whether the presence of C. elegans would elicit changes in PA23 gene activity. Co-culturing the two organisms increased expression of a number of genes associated with biocontrol, including phzA, hcnA, phzR, phzI, rpoS and gacS. Exoproduct analysis showed that PHZ and autoinducer signals were upregulated, consistent with the gene expression profiles. Collectively, these findings indicate that PA23 is able to sense the presence of C. elegans and it is able to both repel and kill the nematodes, which should facilitate environmental persistence and ultimately biocontrol.
    PLoS ONE 04/2015; 10(4):e0123184. DOI:10.1371/journal.pone.0123184 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Determining the relationship between individual life-history traits and population dynamics is an essential step to understand and predict natural selection. Model organisms that can be conveniently studied experimentally at both levels are invaluable to test the rich body of theoretical literature in this area. The nematode Caenorhabditis elegans, despite being a well-established workhorse in genetics, has only recently received attention from ecologists and evolutionary biologists, especially with respect to its association with pathogenic bacteria. In order to start filling the gap between the two areas, we conducted a series of experiments aiming at measuring life-history traits as well as population growth of C. elegans in response to three different bacterial strains: Escherichia coli OP50, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa PAO1. Whereas previous studies had established that the latter two reduced the survival of nematodes feeding on them compared to E. coli OP50, we report for the first time an enhancement in reproductive success and population growth for worms feeding on S. enterica Typhimurium. Furthermore, we used an age-specific population dynamic model, parameterized using individual life-history assays, to successfully predict the growth of populations over three generations. This study paves the way for more detailed and quantitative experimental investigation of the ecology and evolution of C. elegans and the bacteria it interacts with, which could improve our understanding of the fate of opportunistic pathogens in the environment.
    Ecology and Evolution 03/2015; 5(8). DOI:10.1002/ece3.1461 · 1.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soil bacteria can be prolific producers of secondary metabolites and other biologically active compounds of economic and clinical importance. These natural products are often synthesized by large multi-enzyme complexes such as polyketide synthases (PKSs) or non-ribosomal peptide synthases (NRPSs). The plant-associated Gram-negative bacterium, Serratia plymuthica A153, produces several secondary metabolites and is capable of killing the nematode worm Caenorhabditis elegans; a commonly used model for the study of bacterial virulence. In this study, we show that disruption of the hybrid PKS/NRPS zeamine (zmn) gene cluster results in the attenuation of "fast-killing" of C. elegans, indicating that zeamine has nematicidal activity. C. elegans also exhibits age-dependent susceptibility to zeamine, with younger worms being most sensitive to the bioactive molecule. The zmn gene cluster is widely distributed within Serratia and phytopathogenic Dickeya species and investigation of strains harboring the zmn gene cluster showed that several of them are highly virulent in C. elegans. Zeamine was described previously as a phytotoxin and broad-spectrum antibacterial compound. In addition to its nematicidal properties, we show here that zeamine can also kill Saccharomyces cerevisiae and Schizosaccharomyces pombe. The expression of the zmn gene cluster and regulation of zeamine production were also investigated. Transcription of the cluster was growth phase-dependent, and was modulated by the post-transcriptional RNA chaperone, Hfq. The results of this study show that zeamine is a highly toxic molecule with little, or no, apparent host specificity in very diverse biological systems. In its current form, zeamine(s) may be useful as a lead compound suitable for chemical modification and structure-activity assays. However, because of widespread non-selective toxicity in multiple bioassays, unmodified zeamine(s) is unlikely to be suitable as a therapeutic antibiotic.
    Frontiers in Microbiology 02/2015; 6:137. DOI:10.3389/fmicb.2015.00137 · 3.94 Impact Factor