Article

Spin-polarized currents in double and triple quantum dots driven by ac magnetic fields

Physical review. B, Condensed matter (Impact Factor: 3.77). 01/2010; DOI: 10.1103/PhysRevB.82.205304
Source: arXiv

ABSTRACT We analyze transport through both a double quantum dot and a triple quantum dot with inhomogeneous Zeeman splittings in the presence of crossed dc and ac magnetic fields. We find that strongly spin-polarized current can be achieved by tuning the relative energies of the Zeeman-split levels of the dots, by means of electric gate voltages: depending on the energy-level detuning, the double quantum dot works either as spin-up or spin-down filter. We show that a triple quantum dot in series under crossed dc and ac magnetic fields can act not only as spin filter but also as spin inverter.

0 Bookmarks
 · 
54 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the transport through asymmetric double quantum dots with an inhomogeneous Zeeman splitting in the presence of crossed dc and ac magnetic fields. A strong spin-polarized current can be obtained by changing the dc magnetic field. It is mainly due to the resonant tunnelling. But for the ferromagnetic right electrode, the electron spin resonance also plays an important role in transport. We show that the double quantum dots with three-level mixing under crossed dc and ac magnetic fields can act not only as a bipolar spin filter but also as a spin inverter under suitable conditions.
    Chinese Physics B 11/2012; 21(11):117201. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delocalization by resonance between contributing structures explains the enhanced stability of resonance-hybrid molecules. Here we report the realization of resonance-hybrid states in a few-electron triple quantum dot (TQD) obseved by excitation spectroscopy. The stabilization of the resonance-hybrid state and the bond between contributing states are achieved through access to the intermediate states with double occupancy of the dots. This explains why the energy of the hybridized singlet state is significantly lower than that of the triplet state. The properties of the three-electron doublet states can also be understood with the resonance-hybrid picture and geometrical phase. As well as for fundamental TQD physics, our results are useful for the investigation of materials such as quantum dot arrays, quantum information processors, and chemical reaction and quantum simulators.
    Physical review. B, Condensed matter 02/2012; 85(8). · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spin and orbital degrees of freedom play different roles in quantum transport through nanostructures. In this paper, we study spin and orbital blockade in quantum transport through an asymmetric double quantum dot with inhomogeneous Zeeman splittings in the presence of crossed dc and ac magnetic fields. The interplay among electron spin resonance, Pauli exclusion, resonant tunneling, and quantum interference leads to quite different current responses for forward/backward bias in the slow/fast spin-flip regime. In particular, as change of the dc magnetic field, we observe both spin blockade (due to multiple particle spin correlation) and orbital blockade (due to quantum destructive interference) in the same system. Under suitable conditions, our system can act as bipolar spin filter, sensitive spin switch, and spin inverter.
    EPL (Europhysics Letters) 05/2012; 98(4):47009. · 2.26 Impact Factor

Full-text (3 Sources)

Download
58 Downloads
Available from
May 19, 2014