Bacterial community morphogenesis is intimately linked to the intracellular redox state.

Former address: Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139.
Journal of bacteriology (Impact Factor: 2.69). 01/2013; DOI: 10.1128/JB.02273-12
Source: PubMed

ABSTRACT Many microbial species form multicellular structures, comprising elaborate wrinkles and concentric rings, yet the rules governing their architecture are poorly understood. The opportunistic pathogen Pseudomonas aeruginosa produces phenazines, small molecules that act as alternate electron acceptors to oxygen and nitrate to oxidize the intracellular redox state and that influence biofilm morphogenesis. Here, we show that the depth occupied by cells within colony biofilms correlates well with electron acceptor availability. Perturbations in the environmental provision, endogenous production, and utilization of electron acceptors affect colony development in a manner consistent with redox control. Intracellular NADH levels peak before the induction of colony wrinkling. These results suggest that redox imbalance is a major factor driving the morphogenesis of P. aeruginosa biofilms and that wrinkling itself is an adaptation that maximizes oxygen accessibility and thereby supports metabolic homeostasis. This type of redox-driven morphological change is reminiscent of developmental processes that occur in metazoans.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary Microbial biofilms are commonly found in nature and are highly relevant to public health. Biofilms can impose high risks to drinking water distribution by stable adherence to the interior of water pipes, and to food industry by contamination of food processing systems. Biofilm adherence to indwelling medical devices causes high rates of clinical infections that are difficult to eliminate as biofilm microbes resist treatment with antibiotics and biocides. These microbial abilities are related to the spatial composition and overall morphology of the biofilm. While the mechanisms underlying biofilm structure and morphology have been examined for bacteria, much less is known about eukaryotic biofilms. Here we find that the size, shape and patterning of budding yeast colonies can arise from constraining colony expansion to the surface of agar plates. Through computational analysis and mathematical modeling, we find that rapid colony expansion, colony shape irregularity and hierarchical wrinkling of the yeast colony surface can result from two-dimensionality of expansion imposed by the adhesin FLO11. Finally, we find that two-dimensional expansion conveys competitive advantage during head-to-head competition with the mutant cells lacking FLO11.
    PLoS Computational Biology 12/2014; 10(12):e1003979. DOI:10.1371/journal.pcbi.1003979 · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans biofilm formation is a key virulence trait that involves hyphal growth and adhesin expression. Pyocyanin (PYO), a phenazine secreted by Pseudomonas aeruginosa, inhibits both C. albicans biofilm formation and development of wrinkled colonies. Using a genetic screen, we identified two mutants, ssn3Δ/Δ and ssn8Δ/Δ, which continued to wrinkle in the presence of PYO. Ssn8 is a cyclin-like protein and Ssn3 is similar to cyclin-dependent kinases; both proteins are part of the heterotetrameric Cdk8 module that forms a complex with the transcriptional co-regulator, Mediator. Ssn3 kinase activity was also required for PYO sensitivity as a kinase dead mutant maintained a wrinkled colony morphology in the presence of PYO. Furthermore, similar phenotypes were observed in mutants lacking the other two components of the Cdk8 module-Srb8 and Srb9. Through metabolomics analyses and biochemical assays, we showed that a compromised Cdk8 module led to increases in glucose consumption, glycolysis-related transcripts, oxidative metabolism and ATP levels even in the presence of PYO. In the mutant, inhibition of respiration to levels comparable to the PYO-treated wild type inhibited wrinkled colony development. Several lines of evidence suggest that PYO does not act through Cdk8. Lastly, the ssn3 mutant was a hyperbiofilm former, and maintained higher biofilm formation in the presence of PYO than the wild type. Together these data provide novel insights into the role of the Cdk8 module of Mediator in regulation of C. albicans physiology and the links between respiratory activity and both wrinkled colony and biofilm development.
    PLoS Genetics 10/2014; 10(10):e1004567. DOI:10.1371/journal.pgen.1004567 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The opportunistic pathogen Pseudomonas aeruginosa encodes a large and diverse complement of aerobic terminal oxidases, which is thought to contribute to its ability to thrive in settings with low oxygen availability. In this issue, Arai et al. present a thorough characterization of these five complexes, enabling a more detailed understanding of aerobic respiration in this organism.
    Journal of Bacteriology 09/2014; 196(24). DOI:10.1128/JB.02336-14 · 2.69 Impact Factor


Available from
Jun 2, 2014