Article

Overview of Mechanisms and Uses of Trichoderma spp.

Phytopathology (Impact Factor: 2.97). 03/2006; 96(2):190-4. DOI: 10.1094/PHYTO-96-0190
Source: PubMed

ABSTRACT ABSTRACT Fungi in the genus Trichoderma have been known since at least the 1920s for their ability to act as biocontrol agents against plant pathogens. Until recently, the principal mechanisms for control have been assumed to be those primarily acting upon the pathogens and included mycoparasitism, antibiosis, and competition for resources and space. Recent advances demonstrate that the effects of Trichoderma on plants, including induced systemic or localized resistance, are also very important. These fungi colonize the root epidermis and outer cortical layers and release bioactive molecules that cause walling off of the Trichoderma thallus. At the same time, the transcriptome and the proteome of plants are substantially altered. As a consequence, in addition to induction of pathways for resistance in plants, increased plant growth and nutrient uptake occur. However, at least in maize, the increased growth response is genotype specific, and some maize inbreds respond negatively to some strains. Trichoderma spp. are beginning to be used in reasonably large quantities in plant agriculture, both for disease control and yield increases. The studies of mycoparasitism also have demonstrated that these fungi produce a rich mixture of antifungal enzymes, including chitinases and beta-1,3 glucanases. These enzymes are synergistic with each other, with other antifungal enzymes, and with other materials. The genes encoding the enzymes appear useful for producing transgenic plants resistant to diseases and the enzymes themselves are beneficial for biological control and other processes.

0 Bookmarks
 · 
196 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The term “nanotechnology” is derived from the Greek word ‘nano’, meaning ‘dwarf’, and applies to the principles of engineering and manufacturing at a molecular level. The common definition of nanotechnology is that of manipulation, observation, measurement and synthesis at a scale of 1 to 100 nanometers (Raj and Asha, 2009). Nanobiotechnology is a new branch of science dedicated to the improvement and utilization of devices and structures ranging from 1 to 100 nm in size, in which new chemical, physical, and biological properties, not seen in bulk materials, can be observed. There is tremendous excitement in this field with respect to their fundamental properties, organization of superstructure and applications.
    02/2011: pages 420-443; , ISBN: ISBN 978-90-481-3713-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of microbial inoculants for specific crops is a multistage process with participation of scientific researchers and industry. The process starts with isolation/selection of potential strains with desired properties such as plant growth stimulation, enhancement of availability of vitally important nutrients and therefore improvement of plant nutrition, amelioration of biotic and abiotic stress, degradation of pollutants, and biological control of phytopathogenic microbes. Subsequent assessment of the potentially promising strains for safety, the development of industrial production protocols and suitable formulations, registration and marketing are the most costly and time consuming steps in product development. Elucidation of dominant properties of the strain will help to choose correct strategy for positioning of the product on the market of microbial inoculants. The evaluation of examples of selected products based on Trichoderma harzianum T22, Bacillus subtilis FZB24, Bacillus amyloliquefaciens FZB42 and Pseudomonas chlororaphis MA342 provides important insights of successful transfer of academically gained knowledge in commercially successful microbial products used worldwide. Major challenges in development, registration and marketing of microbial inoculants are discussed.
    01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biocontrol fungi (BCF) are agents that control plant diseases. These include the well-known Trichoderma spp. and the recently described Sebacinales spp. They have the ability to control numerous foliar, root, and fruit pathogens and even invertebrates such as nematodes. However, this is only a subset of their abilities. We now know that they also have the ability to ameliorate a wide range of abiotic stresses, and some of them can also alleviate physiological stresses such as seed aging. They can also enhance nutrient uptake in plants and can substantially increase nitrogen use efficiency in crops. These abilities may be more important to agriculture than disease control. Some strains also have abilities to improve photosynthetic efficiency and probably respiratory activities of plants. All of these capabilities are a consequence of their abilities to reprogram plant gene expression, probably through activation of a limited number of general plant pathways.
    Annual Review of Phytopathology 03/2010; 48:21-43. · 10.23 Impact Factor

Full-text (2 Sources)

View
5 Downloads
Available from
Oct 16, 2014