Article

Transcriptional and Functional Profiling of Human Embryonic Stem Cell-Derived Cardiomyocytes

Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 02/2008; 3(10):e3474. DOI: 10.1371/journal.pone.0003474
Source: PubMed

ABSTRACT Human embryonic stem cells (hESCs) can serve as a potentially limitless source of cells that may enable regeneration of diseased tissue and organs. Here we investigate the use of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in promoting recovery from cardiac ischemia reperfusion injury in a mouse model. Using microarrays, we have described the hESC-CM transcriptome within the spectrum of changes that occur between undifferentiated hESCs and fetal heart cells. The hESC-CMs expressed cardiomyocyte genes at levels similar to those found in 20-week fetal heart cells, making this population a good source of potential replacement cells in vivo. Echocardiographic studies showed significant improvement in heart function by 8 weeks after transplantation. Finally, we demonstrate long-term engraftment of hESC-CMs by using molecular imaging to track cellular localization, survival, and proliferation in vivo. Taken together, global gene expression profiling of hESC differentiation enables a systems-based analysis of the biological processes, networks, and genes that drive hESC fate decisions, and studies such as this will serve as the foundation for future clinical applications of stem cell therapies.

1 Follower
 · 
153 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are the most promising source of cardiomyocytes (CMs) for experimental and clinical applications, but their use is largely limited by a structurally and functionally immature phenotype that most closely resembles embryonic or fetal heart cells. The application of physical stimuli to influence hPSC-CMs through mechanical and bioelectrical transduction offers a powerful strategy for promoting more developmentally mature CMs. Here we summarize the major events associated with in vivo heart maturation and structural development. We then review the developmental state of in vitro derived hPSC-CMs, while focusing on physical (electrical and mechanical) stimuli and contributory (metabolic and hypertrophic) factors that are actively involved in structural and functional adaptations of hPSC-CMs. Finally, we highlight areas for possible future investigation that should provide a better understanding of how physical stimuli may promote in vitro development and lead to mechanistic insights. Advances in the use of physical stimuli to promote developmental maturation will be required to overcome current limitations and significantly advance research of hPSC-CMs for cardiac disease modeling, in vitro drug screening, cardiotoxicity analysis and therapeutic applications.
    Stem Cell Research & Therapy 10/2014; 5(5):117. DOI:10.1186/scrt507 · 4.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent progresses in the field of Induced Pluripotent Stem Cells (iPSCs) have opened up many gateways for the research in therapeutics. iPSCs are the cells which are reprogrammed from somatic cells using different transcription factors. iPSCs possess unique properties of self renewal and differentiation to many types of cell lineage. Hence could replace the use of embryonic stem cells (ESC), and may overcome the various ethical issues regarding the use of embryos in research and clinics. Overwhelming responses prompted worldwide by a large number of researchers about the use of iPSCs evoked a large number of peple to establish more authentic methods for iPSC generation. This would require understanding the underlying mechanism in a detailed manner. There have been a large number of reports showing potential role of different molecules as putative regulators of iPSC generating methods. The molecular mechanisms that play role in reprogramming to generate iPSCs from different types of somatic cell sources involves a plethora of molecules including miRNAs, DNA modifying agents (viz. DNA methyl transferases), NANOG, etc. While promising a number of important roles in various clinical/research studies, iPSCs could also be of great use in studying molecular mechanism of many diseases. There are various diseases that have been modeled by uing iPSCs for better understanding of their etiology which maybe further utilized for developing putative treatments for these diseases. In addition, iPSCs are used for the production of patient-specific cells which can be transplanted to the site of injury or the site of tissue degeneration due to various disease conditions. The use of iPSCs may eliminate the chances of immune rejection as patient specific cells may be used for transplantation in various engraftment processes. Moreover, iPSC technology has been employed in various diseases for disease modeling and gene therapy. The technique offers benefits over other similar techniques such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner.
    Frontiers in Cell and Developmental Biology 02/2015; 3. DOI:10.3389/fcell.2015.00002
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells are typically subject to profound metabolic alterations, including the Warburg effect wherein cancer cells oxidize a decreased fraction of the pyruvate generated from glycolysis. We show herein that the mitochondrial pyruvate carrier (MPC), composed of the products of the MPC1 and MPC2 genes, modulates fractional pyruvate oxidation. MPC1 is deleted or underexpressed in multiple cancers and correlates with poor prognosis. Cancer cells re-expressing MPC1 and MPC2 display increased mitochondrial pyruvate oxidation, with no changes in cell growth in adherent culture. MPC re-expression exerted profound effects in anchorage-independent growth conditions, however, including impaired colony formation in soft agar, spheroid formation, and xenograft growth. We also observed a decrease in markers of stemness and traced the growth effects of MPC expression to the stem cell compartment. We propose that reduced MPC activity is an important aspect of cancer metabolism, perhaps through altering the maintenance and fate of stem cells. Copyright © 2014 Elsevier Inc. All rights reserved.
    Molecular Cell 10/2014; 56(3):400-413. DOI:10.1016/j.molcel.2014.09.026 · 14.46 Impact Factor

Full-text (3 Sources)

Download
58 Downloads
Available from
Jun 2, 2014