Article

Brain Reactivity Differentiates Subjects with High and Low Dream Recall Frequencies during Both Sleep and Wakefulness.

Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Lyon F-69500, France.
Cerebral Cortex (Impact Factor: 8.31). 01/2013; DOI: 10.1093/cercor/bhs388
Source: PubMed

ABSTRACT The neurophysiological correlates of dreaming remain unclear. According to the "arousal-retrieval" model, dream encoding depends on intrasleep wakefulness. Consistent with this model, subjects with high and low dream recall frequency (DRF) report differences in intrasleep awakenings. This suggests a possible neurophysiological trait difference between the 2 groups. To test this hypothesis, we compared the brain reactivity (evoked potentials) of subjects with high (HR, N = 18) and low (LR, N = 18) DRF during wakefulness and sleep. During data acquisition, the subjects were presented with sounds to be ignored (first names randomly presented among pure tones) while they were watching a silent movie or sleeping. Brain responses to first names dramatically differed between the 2 groups during both sleep and wakefulness. During wakefulness, the attention-orienting brain response (P3a) and a late parietal response were larger in HR than in LR. During sleep, we also observed between-group differences at the latency of the P3a during N2 and at later latencies during all sleep stages. Our results demonstrate differences in the brain reactivity of HR and LR during both sleep and wakefulness. These results suggest that the ability to recall dreaming is associated with a particular cerebral functional organization, regardless of the state of vigilance.

0 Followers
 · 
264 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lucid dreaming is a state of awareness that one is dreaming, without leaving the sleep state. Dream reports show that self-reflection and volitional control are more pronounced in lucid compared with nonlucid dreams. Mostly on these grounds, lucid dreaming has been associated with metacognition. However, the link to lucid dreaming at the neural level has not yet been explored. We sought for relationships between the neural correlates of lucid dreaming and thought monitoring. Human participants completed a questionnaire assessing lucid dreaming ability, and underwent structural and functional MRI. We split participants based on their reported dream lucidity. Participants in the high-lucidity group showed greater gray matter volume in the frontopolar cortex (BA9/10) compared with those in the low-lucidity group. Further, differences in brain structure were mirrored by differences in brain function. The BA9/10 regions identified through structural analyses showed increases in blood oxygen level-dependent signal during thought monitoring in both groups, and more strongly in the high-lucidity group. Our results reveal shared neural systems between lucid dreaming and metacognitive function, in particular in the domain of thought monitoring. This finding contributes to our understanding of the mechanisms enabling higher-order consciousness in dreams. Copyright © 2015 the authors 0270-6474/15/351082-07$15.00/0.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although sleep facilitates learning and memory, the roles of dreaming and habitual levels of recalling dreams remain unknown. This study examined if performance and overnight improvement on a rapid eye movement sleep-sensitive visuomotor task is associated differentially with habitually high or low dream recall frequency. As a relation between dream production and visuospatial skills has been demonstrated previously, one possibility is that frequency of dream recall will be linked to performance on visuomotor tasks such as the Mirror Tracing Task. We expected that habitually low dream recallers would perform more poorly on the Mirror Tracing Task than would high recallers and would show less task improvement following a night of sleep. Fifteen low and 20 high dream recallers slept one night each in the laboratory and performed the Mirror Tracing Task before and after sleep. Low recallers had overall worse baseline performance but a greater evening-to-morning improvement than did high recallers. Greater improvements in completion time in low recallers were associated with Stage 2 rather than rapid eye movement sleep. Findings support the separate notions that dreaming is related to visuomotor processes and that different levels of visuomotor skill engage different sleep- and dream-related consolidation mechanisms. © 2015 European Sleep Research Society.
    Journal of Sleep Research 02/2015; DOI:10.1111/jsr.12286 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Incorporation of details from waking life events into Rapid Eye Movement (REM) sleep dreams has been found to be highest on the night after, and then 5-7 nights after events (termed, respectively, the day-residue and dream-lag effects). In experiment 1, 44 participants kept a daily log for 10 days, reporting major daily activities (MDAs), personally significant events (PSEs), and major concerns (MCs). Dream reports were collected from REM and Slow Wave Sleep (SWS) in the laboratory, or from REM sleep at home. The dream-lag effect was found for the incorporation of PSEs into REM dreams collected at home, but not for MDAs or MCs. No dream-lag effect was found for SWS dreams, or for REM dreams collected in the lab after SWS awakenings earlier in the night. In experiment 2, the 44 participants recorded reports of their spontaneously recalled home dreams over the 10 nights following the instrumental awakenings night, which thus acted as a controlled stimulus with two salience levels, high (sleep lab) and low (home awakenings). The dream-lag effect was found for the incorporation into home dreams of references to the experience of being in the sleep laboratory, but only for participants who had reported concerns beforehand about being in the sleep laboratory. The delayed incorporation of events from daily life into dreams has been proposed to reflect REM sleep-dependent memory consolidation. However, an alternative emotion processing or emotional impact of events account, distinct from memory consolidation, is supported by the finding that SWS dreams do not evidence the dream-lag effect. Copyright © 2015. Published by Elsevier Inc.
    Neurobiology of Learning and Memory 02/2015; 32. DOI:10.1016/j.nlm.2015.01.009 · 4.04 Impact Factor