Article

The vasculome of the mouse brain.

Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
PLoS ONE (Impact Factor: 3.53). 12/2012; 7(12):e52665. DOI: 10.1371/journal.pone.0052665
Source: PubMed

ABSTRACT The blood vessel is no longer viewed as passive plumbing for the brain. Increasingly, experimental and clinical findings suggest that cerebral endothelium may possess endocrine and paracrine properties - actively releasing signals into and receiving signals from the neuronal parenchyma. Hence, metabolically perturbed microvessels may contribute to central nervous system (CNS) injury and disease. Furthermore, cerebral endothelium can serve as sensors and integrators of CNS dysfunction, releasing measurable biomarkers into the circulating bloodstream. Here, we define and analyze the concept of a brain vasculome, i.e. a database of gene expression patterns in cerebral endothelium that can be linked to other databases and systems of CNS mediators and markers. Endothelial cells were purified from mouse brain, heart and kidney glomeruli. Total RNA were extracted and profiled on Affymetrix mouse 430 2.0 micro-arrays. Gene expression analysis confirmed that these brain, heart and glomerular preparations were not contaminated by brain cells (astrocytes, oligodendrocytes, or neurons), cardiomyocytes or kidney tubular cells respectively. Comparison of the vasculome between brain, heart and kidney glomeruli showed that endothelial gene expression patterns were highly organ-dependent. Analysis of the brain vasculome demonstrated that many functionally active networks were present, including cell adhesion, transporter activity, plasma membrane, leukocyte transmigration, Wnt signaling pathways and angiogenesis. Analysis of representative genome-wide-association-studies showed that genes linked with Alzheimer's disease, Parkinson's disease and stroke were detected in the brain vasculome. Finally, comparison of our mouse brain vasculome with representative plasma protein databases demonstrated significant overlap, suggesting that the vasculome may be an important source of circulating signals in blood. Perturbations in cerebral endothelial function may profoundly affect CNS homeostasis. Mapping and dissecting the vasculome of the brain in health and disease may provide a novel database for investigating disease mechanisms, assessing therapeutic targets and exploring new biomarkers for the CNS.

2 Followers
 · 
151 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: L-Glutamate is considered the most important excitatory amino acid in the mammalian brain. Strict control of its concentration in the brain interstitial fluid is important to maintain neurotransmission and avoid excitotoxicity. The role of astrocytes in handling L-glutamate transport and metabolism is well known, however endothelial cells may also play an important role through mediating brain-to-blood L-glutamate efflux. Expression of excitatory amino acid transporters has been demonstrated in brain endothelial cells of bovine, human, murine, rat and porcine origin. These can account for high affinity concentrative uptake of L-glutamate from the brain interstitial fluid into the capillary endothelial cells. The mechanisms in between L-glutamate uptake in the endothelial cells and L-glutamate appearing in the blood are still unclear and may involve a luminal transporter for L-glutamate, metabolism of L-glutamate and transport of metabolites or a combination of the two. However, both in vitro and in vivo studies have demonstrated blood-to-brain transport of L-glutamate, at least during pathological events. This review summarizes the current knowledge on the brain-to-blood L-glutamate efflux hypothesis including possible mechanisms to account for the transport, in vivo studies on blood glutamate scavenging and potential clinical relevance of the phenomenon. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.
    Archives of Medical Research 11/2014; 45(8). DOI:10.1016/j.arcmed.2014.11.004 · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial cell (EC) function and susceptibility to vascular disease are regulated by flow; this relationship has been modeled in systemic, but not cerebrovascular, EC culture. We studied the effects of unidirectional flow of medium, produced by orbital rotation of cultures, on morphology and protein expression in bEnd.3 mouse brain ECs. Flow altered the expression of key transcription factors and gasotransmitter-synthesizing enzymes, and increased NO production. Statins and angiotensin receptor blockers reproduced the effect of flow on endothelial nitric oxide synthase expression. Thus, flow modified brain EC properties and function in vitro, with similarities and possible differences compared to previous studies on systemic ECs. Thus, the effect of flow on brain ECs can be modeled in vitro and may assist the investigation of mechanisms of cerebrovascular disease.
    Vascular Pharmacology 02/2014; DOI:10.1016/j.vph.2014.02.003 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the neurovascular unit was originally developed as a conceptual framework for stroke, it is now recognized that these cell-cell interactions play critical roles in many other CNS disorders as well. In brain trauma, perturbations within the neurovascular unit may be especially important. Changes in neurovascular coupling may disrupt blood flow and metabolic regulation. Disruption of transmitter release-reuptake kinetics in neurons and astrocytes may augment excitotoxicity. Alterations in gliovascular signaling may underlie blood-brain barrier disruptions and traumatic edema. Perturbations in cell-cell signaling between all neuronal, glial, and vascular compartments may increase susceptibility to cell death. Finally, repairing the brain after trauma requires the integrated restoration of all neural, glial, and vascular connectivity for effective functional recovery. Just as in stroke, saving neurons alone may also be insufficient for treating brain trauma. In this minireview, we attempt to briefly highlight some of these pathways to underscore the importance of rescuing the entire neurovascular unit in brain trauma. © 2014 John Wiley & Sons Ltd.
    CNS Neuroscience & Therapeutics 12/2014; 21(4). DOI:10.1111/cns.12359 · 3.78 Impact Factor

Preview

Download
2 Downloads
Available from