Article

Mi2β Is Required for γ-Globin Gene Silencing: Temporal Assembly of a GATA-1-FOG-1-Mi2 Repressor Complex in β-YAC Transgenic Mice.

Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America.
PLoS Genetics (Impact Factor: 8.17). 12/2012; 8(12):e1003155. DOI: 10.1371/journal.pgen.1003155
Source: PubMed

ABSTRACT Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the -566 GATA motif of the (A)γ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of (A)γ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the -566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1-mediated repressor complex was disrupted by the -566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting -566 (A)γ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis.

0 Bookmarks
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nucleosome remodeling and deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity, and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis, and accelerated aging. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer.
    Translational Research 05/2014; DOI:10.1016/j.trsl.2014.05.003 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The developmental regulation of globin gene expression has served as an important model for understanding higher eukaryotic transcriptional control mechanisms. During human erythroid development there is a sequential switch from expression of the embryonic ε-globin gene to the fetal ɣ-globin gene in utero, and post-partum the ɣ-globin gene is silenced as the β-globin gene becomes the predominantly expressed locus. Because the expression of normally silenced fetal ɣ-type globin genes, and resultant production of fetal hemoglobin (HbF) in adult erythroid cells can ameliorate the pathophysiologic consequences of both abnormal β-globin chains in sickle cell anemia and deficient β-globin chain production in β-thalassemia, understanding the complex mechanisms of this developmental switch has direct translational clinical relevance. Of particular interest for translational research are the factors that mediate silencing of the ɣ-globin gene in adult stage erythroid cells. In addition to the regulatory roles of transcription factors and their cognate DNA sequence motifs, there has been a growing appreciation of the role of epigenetic signals and their cognate factors in gene regulation, and in particular in gene silencing through chromatin. Much of the information about epigenetic silencing stems from studies of globin gene regulation. As discussed here, the term epigenetics refers to post-synthetic modifications of DNA and chromosomal histone proteins that affect gene expression and can be inherited through somatic cell replication. A full understanding of the molecular mechanisms of epigenetic silencing of fetal hemoglobin expression should facilitate development of more effective treatment of β-globin chain hemoglobinopathies.
    Translational Research 05/2014; DOI:10.1016/j.trsl.2014.05.002 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human β-globin locus is comprised of embryonic, fetal and adult globin genes that are expressed in a developmental stage-specific manner. Mutations in the globin locus give rise to the β-globinopathies, β-thalassemia and sickle cell disease, that begin to manifest symptoms around the time of birth. Although the fetal globin genes are autonomously silenced in adult stage erythroid cells, mutations lying both within and outside of the locus lead to natural variations in the level of fetal globin gene expression, and some of these significantly ameliorate the clinical symptoms of the β-globinopathies. Multiple reports have now identified several transcription factors that are involved in fetal globin gene repression in definitive (adult) stage erythroid cells (the TR2/TR4 heterodimer, c-Myb, KLFs, BCL11A, and SOX6). To carry out their repression functions, chromatin modifying enzymes (such as DNA methyltransferase, histone deacetylases and lysine-specific histone demethylase 1) are additionally involved as a consequence of forming large macromolecular complexes with the DNA-binding subunits of these cellular machines. This review focuses on the molecular mechanisms underlying fetal globin gene silencing and possible near future molecularly-targeted therapies for treating the β-globinopathies.
    Molecular and Cellular Biology 07/2014; 34(19). DOI:10.1128/MCB.00714-14 · 5.04 Impact Factor

Full-text

Download
26 Downloads
Available from
May 31, 2014

Flavia Costa