Article

Small Molecule Targeting Cdc42-Intersectin Interaction Disrupts Golgi Organization and Suppresses Cell Motility

Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2013; 110(4). DOI: 10.1073/pnas.1116051110
Source: PubMed

ABSTRACT Signaling through the Rho family of small GTPases has been intensely investigated for its crucial roles in a wide variety of human diseases. Although RhoA and Rac1 signaling pathways are frequently exploited with the aid of effective small molecule modulators, studies of the Cdc42 subclass have lagged because of a lack of such means. We have applied high-throughput in silico screening and identified compounds that are able to fit into the surface groove of Cdc42, which is critical for guanine nucleotide exchange factor binding. Based on the interaction between Cdc42 and intersectin (ITSN), a specific Cdc42 guanine nucleotide exchange factor, we discovered compounds that rendered ITSN-like interactions in the binding pocket. By using in vitro binding and imaging as well as biochemical and cell-based assays, we demonstrated that ZCL278 has emerged as a selective Cdc42 small molecule modulator that directly binds to Cdc42 and inhibits its functions. In Swiss 3T3 fibroblast cultures, ZCL278 abolished microspike formation and disrupted GM130-docked Golgi structures, two of the most prominent Cdc42-mediated subcellular events. ZCL278 reduces the perinuclear accumulation of active Cdc42 in contrast to NSC23766, a selective Rac inhibitor. ZCL278 suppresses Cdc42-mediated neuronal branching and growth cone dynamics as well as actin-based motility and migration in a metastatic prostate cancer cell line (i.e., PC-3) without disrupting cell viability. Thus, ZCL278 is a small molecule that specifically targets Cdc42-ITSN interaction and inhibits Cdc42-mediated cellular processes, thus providing a powerful tool for research of Cdc42 subclass of Rho GTPases in human pathogenesis, such as those of cancer and neurological disorders.

0 Followers
 · 
121 Views
  • Source
    • "The functions of multiple Ras-related GTPases are frequently co-opted during infection as well as in acquired and genetic diseases . In addition, GTPases are gaining traction as therapeutic targets [6] [7] [8]. Thus, there is a need to pinpoint the pivotal GTPases in each scenario by quantitatively and temporally monitoring changes in activities. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a rapid assay for measuring the cellular activity of small GTPases in response to a specific stimulus. Effector functionalized beads are used to quantify in parallel multiple, GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus.
    Analytical Biochemistry 08/2013; 442. DOI:10.1016/j.ab.2013.07.039 · 2.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The Rho GTPases are a family of proteins that control fundamental cellular processes in response to extracellular stimuli and internal programs. Rho GTPases function as molecular switches in which the GTP-bound proteins are active and GDP-bound proteins are inactive. This article will focus on one Rho family member, Cdc42, which is overexpressed in a number of human cancers, and which might provide new therapeutic targets in malignancies. Areas covered: In this article, the key regulators and effectors of Cdc42 and their molecular alterations are described. The complex interactions between the signaling cascades regulated by Cdc42 are also analyzed. Expert opinion: While mutations in Cdc42 have not been reported in human cancer, aberrant expression of Cdc42 has been reported in a variety of tumor types and in some instances has been correlated with poor prognosis. Recently, it has been shown that Cdc42 activation by oncogenic Ras is crucial for Ras-mediated tumorigenesis, suggesting that targeting Cdc42 or its effectors might be useful in tumors harboring activating Ras mutations.
    Expert Opinion on Therapeutic Targets 08/2013; 17(11). DOI:10.1517/14728222.2013.828037 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal expression or mutations in Ras proteins has been found in up to 30% of cancer cell types, making them excellent protein models to probe structure-function relationships of cell-signaling processes that mediate cell transformtion. Yet, there has been very little development of therapies to help tackle Ras-related diseased states. The development of small molecules to target Ras proteins to potentially inhibit abnormal Ras-stimulated cell signaling has been conceptualized and some progress has been made over the last 16 or so years. Here, we briefly review studies characterizing Ras protein-small molecule interactions to show the importance and potential that these small molecules may have for Ras-related drug discovery. We summarize recent results, highlighting small molecules that can be directly targeted to Ras using Structure-Based Drug Design (SBDD) and Fragment-Based Lead Discovery (FBLD) methods. The inactivation of Ras oncogenic signaling in vitro by small molecules is currently an attractive hurdle to try to and leap over in order to attack the oncogenic state. In this regard, important features of previously characterized properties of small molecule Ras targets, as well as a current understanding of conformational and dynamics changes seen for Ras-related mutants, relative to wild type, must be taken into account as newer small molecule design strategies towards Ras are developed.
    Open Journal of Biophysics 10/2013; 3(4):207-211. DOI:10.4236/ojbiphy.2013.34025
Show more