Ecological correlates of risk and incidence of West Nile virus in the United States

Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, Saint Louis, MO, 63130, USA.
Oecologia (Impact Factor: 3.09). 11/2009; 158(4):699-708. DOI: 10.1007/s00442-008-1169-9
Source: PubMed


West Nile virus, which was recently introduced to North America, is a mosquito-borne pathogen that infects a wide range of vertebrate hosts, including humans. Several species of birds appear to be the primary reservoir hosts, whereas other bird species, as well as other vertebrate species, can be infected but are less competent reservoirs. One hypothesis regarding the transmission dynamics of West Nile virus suggests that high bird diversity reduces West Nile virus transmission because mosquito blood-meals are distributed across a wide range of bird species, many of which have low reservoir competence. One mechanism by which this hypothesis can operate is that high-diversity bird communities might have lower community-competence, defined as the sum of the product of each species' abundance and its reservoir competence index value. Additional hypotheses posit that West Nile virus transmission will be reduced when either: (1) abundance of mosquito vectors is low; or (2) human population density is low. We assessed these hypotheses at two spatial scales: a regional scale near Saint Louis, MO, and a national scale (continental USA). We found that prevalence of West Nile virus infection in mosquito vectors and in humans increased with decreasing bird diversity and with increasing reservoir competence of the bird community. Our results suggest that conservation of avian diversity might help ameliorate the current West Nile virus epidemic in the USA.

Download full-text


Available from: Larry Clark,
39 Reads
  • Source
    • "Delving into the specifics of regional climates, and into the social and land planning factors that increase risk will also be important for future efforts. Bird diversity can also be an important factor in national WNV spread and human risk 53. Additional data sources (seroprevalence from bird populations, heterogeneity of infectiousness among bird populations, the sero-conversation rate of sentinel chickens, and mosquito populations) are needed to truly understand the transmission cycle of WNV. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We have identified environmental and demographic variables, available in January, that predict the relative magnitude and spatial distribution of West Nile virus (WNV) for the following summer. The yearly magnitude and spatial distribution for WNV incidence in humans in the United States (US) have varied wildly in the past decade. Mosquito control measures are expensive and having better estimates of the expected relative size of a future WNV outbreak can help in planning for the mitigation efforts and costs. West Nile virus is spread primarily between mosquitoes and birds; humans are an incidental host. Previous efforts have demonstrated a strong correlation between environmental factors and the incidence of WNV. A predictive model for human cases must include both the environmental factors for the mosquito-bird epidemic and an anthropological model for the risk of humans being bitten by a mosquito. Using weather data and demographic data available in January for every county in the US, we use logistic regression analysis to predict the probability that the county will have at least one WNV case the following summer. We validate our approach and the spatial and temporal WNV incidence in the US from 2005 to 2013. The methodology was applied to forecast the 2014 WNV incidence in late January 2014. We find the most significant predictors for a county to have a case of WNV to be the mean minimum temperature in January, the deviation of this minimum temperature from the expected minimum temperature, the total population of the county, publicly available samples of local bird populations, and if the county had a case of WNV the previous year.
    PLoS Currents 05/2014; 6. DOI:10.1371/currents.outbreaks.f0b3978230599a56830ce30cb9ce0500
  • Source
    • "The dilution effect hypothesis predicts that greater host diversity should result in lesser disease incidence (Ostfeld and Keesing 2000). This has been shown for WNV and nonpasserine diversity (Ezenwa et al. 2006, Allan et al. 2009) because nonpasserines tend to be poor WNV hosts (Komar et al. 2003, Blitvich 2008). Our dataset contains a large number of meals from Cooper's Hawks and Mourning Doves, which as Accipitriformes and Columbiformes, respectively , are poor hosts of WNV (Komar et al. 2003). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Arboviral activity tracks vector availability, which in temperate regions means that transmission ceases during the winter and must be restarted each spring. In the northeastern United States, Culex restuans Theobald resumes its activity earlier than Culex pipiens L. and is thought to be important in restarting West Nile virus (WNV) transmission. Its role in WNV amplification, however, is unclear, because viral levels commonly remain low until the rise of Cx. pipiens later in the season. Because a vector's feeding habits can reveal key information about disease transmission, we identified early-season (April-June) blood meals from Cx. restuans collected throughout New Jersey, and compared them to published datasets from later in the season and also from other parts of the country. We found significantly higher avian diversity, including poor WNV hosts, and fewer blood meals derived from American Robins (17% versus over 40% found in later season). Critically, we identified blood meals from significantly more female than male birds in species where females are the incubating sex, suggesting that Cx. restuans is able to feed on such a wide variety of hosts in early spring because incubating birds are easy targets. Because WNV amplification depends on virus consistently reaching competent hosts, our results indicate that Cx. restuans is unlikely to be an amplifying vector of WNV in the early season. As the season progresses, however, changes in the availability of nesting birds may make it just as capable as Cx. pipiens, although at somewhat lower abundance as the summer progresses.
    Vector Borne and Zoonotic Diseases 04/2014; 14(6):447-453. DOI:10.1089/vbz.2013.1536 · 2.30 Impact Factor
  • Source
    • "However, as the mosquitoes are often abundant and closely associated with urban environments, and with the immature stages of many species found in aquatic habitats within man-made structures, their proximity to humans results in an increased risk to act as epizootic vectors (ie, bird-to-mosquito-to-human transmission). A shift to improved water conservation strategies in urban areas (ie, the construction of wastewater and wildlife conservation wetlands) may further influence WNV risk, with changes to vector and reservoir host populations.44,45 "
    [Show abstract] [Hide abstract]
    ABSTRACT: The resurgence of West Nile virus (WNV) in North America and Europe in recent years has raised the concerns of local authorities and highlighted that mosquito-borne disease is not restricted to tropical regions of the world. WNV is maintained in enzootic cycles involving, primarily, Culex spp. mosquitoes and avian hosts, with epizootic spread to mammals, including horses and humans. Human infection results in symptomatic illness in approximately one-fifth of cases and neuroinvasive disease in less than 1% of infected persons. The most consistently recognized risk factor for neuroinvasive disease is older age, although diabetes mellitus, alcohol excess, and a history of cancer may also increase risk. Despite the increasing public health concern, the current WNV treatments are inadequate. Current evidence supporting the use of ribavirin, interferon α, and WNV-specific immunoglobulin are reviewed. Nucleic acid detection has been an important diagnostic development, which is particularly important for the protection of the donated blood supply. While effective WNV vaccines are widely available for horses, no human vaccine has been registered. Uncertainty surrounds the magnitude of future risk posed by WNV, and predictive models are limited by the heterogeneity of environmental, vector, and host factors, even in neighboring regions. However, recent history has demonstrated that for regions where suitable mosquito vectors and reservoir hosts are present, there will be a risk of major epidemics. Given the potential for these outbreaks to include severe neuroinvasive disease, strategies should be implemented to monitor for, and respond to, outbreak risk. While broadscale mosquito control programs will assist in reducing the abundance of mosquito populations and subsequently reduce the risks of disease, for many individuals, the use of topical insect repellents and other personal protective strategies will remain the first line of defense against infection.
    International Journal of General Medicine 04/2014; 7:193-203. DOI:10.2147/IJGM.S59902
Show more

Similar Publications