Article

International guidelines for the in vivo assessment of skin properties in non-clinical settings: part 1. pH

National Institute for Occupational Safety and Health, Morgantown, WV, USA.
Skin Research and Technology (Impact Factor: 1.41). 12/2012; 19(2). DOI: 10.1111/srt.12016
Source: PubMed

ABSTRACT BACKGROUND: Skin surface pH is known to influence the dissolution and partitioning of chemicals and may influence exposures that lead to skin diseases. Non-clinical environments (e.g. workplaces) are highly variable, thereby presenting unique measurement challenges that are not typically encountered in clinical settings. Hence, guidelines are needed for consistent measurement of skin surface pH in environments that are difficult to control. METHODS: An expert workshop was convened at the 5th International Conference on Occupational and Environmental Exposure of Skin to Chemicals to review available data on factors that could influence the determination of skin surface pH in non-clinical settings with emphasis on the workplace as a worst case scenario. RESULTS: The key elements of the guidelines are: (i) minimize, to the extent feasible, the influences of relevant endogenous (anatomical position, skin health, time of day), exogenous (hand washing, barrier creams, soaps and detergents, occlusion), environmental (seasonality), and measurement (atmospheric conditions) factors; (ii) report pH measurements results as a difference or percent change (not absolute values) using a measure of central tendency and variability; and (iii) report notable deviations from these guidelines and other relevant factors that may influence measurements. CONCLUSION: Guidelines on the measurement and reporting of skin surface pH in non-clinical settings should promote consistency in data reporting, facilitate inter-comparison of study results, and aid in understanding and preventing occupational skin diseases.

0 Bookmarks
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic wounds have a large impact on health, affecting ∼6.5 M people and costing ∼$25B/year in the US alone [1]. We previously discovered that a genetically modified mouse model displays impaired healing similar to problematic wounds in humans and that sometimes the wounds become chronic. Here we show how and why these impaired wounds become chronic, describe a way whereby we can drive impaired wounds to chronicity at will and propose that the same processes are involved in chronic wound development in humans. We hypothesize that exacerbated levels of oxidative stress are critical for initiation of chronicity. We show that, very early after injury, wounds with impaired healing contain elevated levels of reactive oxygen and nitrogen species and, much like in humans, these levels increase with age. Moreover, the activity of anti-oxidant enzymes is not elevated, leading to buildup of oxidative stress in the wound environment. To induce chronicity, we exacerbated the redox imbalance by further inhibiting the antioxidant enzymes and by infecting the wounds with biofilm-forming bacteria isolated from the chronic wounds that developed naturally in these mice. These wounds do not re-epithelialize, the granulation tissue lacks vascularization and interstitial collagen fibers, they contain an antibiotic-resistant mixed bioflora with biofilm-forming capacity, and they stay open for several weeks. These findings are highly significant because they show for the first time that chronic wounds can be generated in an animal model effectively and consistently. The availability of such a model will significantly propel the field forward because it can be used to develop strategies to regain redox balance that may result in inhibition of biofilm formation and result in restoration of healthy wound tissue. Furthermore, the model can lead to the understanding of other fundamental mechanisms of chronic wound development that can potentially lead to novel therapies.
    PLoS ONE 10/2014; 9(10):e109848. DOI:10.1371/journal.pone.0109848 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Excessive opening of undocked Cx26 hemichannels in the plasma membrane is associated with disease pathogenesis in keratitis-icthyosis-deafness (KID) syndrome. Thus far, excessive opening of KID mutant hemichannels has been attributed, almost solely, to aberrant inhibition by extracellular Ca(2+). This study presents two new possible contributing factors, pH and Zn(2+). Plasma pH levels and μM concentrations of Zn(2+) inhibit WT Cx26 hemichannels. However, A40V KID mutant hemichannels show substantially reduced inhibition by these factors. Using excised patches, acidification was shown to be effective from either side of the membrane suggesting a protonation site accessible to H(+) flux through the pore. Sensitivity to pH was not dependent on extracellular aminosulfonate pH buffers. Single channel recordings showed that acidification did not affect unitary conductance or block the hemichannel, but rather promoted gating to the closed state with transitions characteristic of the intrinsic loop gating mechanism. Examination of two nearby KID mutants in the E1 domain, G45E and D50N, showed no changes in modulation by pH or Zn(2+). N-bromo-succinimide (NBS), but not thiol-specific reagents, attenuated both pH and Zn(2+) responses. Individually mutating each of the five His residues in WT Cx26 did not reveal a key His residue that conferred sensitivity to pH or Zn(2+). From these data and the crystal structure of Cx26 that suggests A40 contributes to an intra-subunit hydrophobic core, the principal effect of the A40V mutation is likely a perturbation in structure that affects loop gating, thereby affecting multiple factors that act to close Cx26 hemichannels via this gating mechanism.
    Journal of Biological Chemistry 06/2014; 289(31). DOI:10.1074/jbc.M114.578757 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Given its advantages in skin application (eg, hydration, antiaging, and protection), argan oil could be used in both dermatological and cosmetic formulations. Therefore, the preparation of nanostructured lipid carriers (NLCs) using argan oil as a liquid lipid is a promising technique, since the former constitute well-established systems for dermal delivery. The aim of this work was to develop a topical formulation of argan oil NLCs to improve skin hydration. Firstly an NLC dispersion was developed and characterized, and afterward an NLC-based hydrogel was prepared. The in vivo evaluation of the suitability of the prepared formulation for the proposed application was assessed in volunteers, by measuring different skin-surface parameters for 1 month. An argan oil NLC-based hydrogel formulation was successfully prepared and characterized. Moreover, the entrapment of the NLCs in the hydrogel net did not affect their colloidal sizes. Additionally, it was observed that this formulation precipitated an increase in skin hydration of healthy volunteers. Therefore, we concluded that the preparation of NLC systems using argan oil as the liquid lipid is a promising strategy, since a synergistic effect on the skin hydration was obtained (ie, NLC occlusion plus argan oil hydration).
    International Journal of Nanomedicine 01/2014; 9:3855-64. DOI:10.2147/IJN.S64008 · 4.20 Impact Factor

Full-text

Download
90 Downloads
Available from
May 29, 2014