Genetic modelling of the PTEN/AKT pathway in cancer research.

Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain.
Clinical and Translational Oncology (Impact Factor: 1.28). 11/2008; 10(10):618-27. DOI: 10.1007/s12094-008-0262-1
Source: PubMed

ABSTRACT The focus on targeted therapies has been fuelled by extensive research on molecular pathways and their role in tumorigenesis. Novel models of human cancer have been created to evaluate the role of specific genes in the different stages of cancer. Currently, mouse modelling of human cancer is possible through the expression of oncogenes, specific genetic mutations or the inactivation of tumour suppressor genes, and these models have begun to provide us with an understanding of the molecular pathways involved in tumour initiation and progression at the physiological level. Additionally, these mouse models serve as an excellent system to evaluate the efficacy of currently developed molecular targeted therapies and identify new potential targets for future therapies. The PTEN/AKT pathway is implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. Deregulation of the PTEN/AKT pathway is a common event in human cancer. Despite the abundant literature, the physiological role of each element of the pathway has begun to be uncovered thanks to genetically engineered mice. This review will summarise some of the key animal models which have helped us to understand this signalling network and its contribution to tumorigenesis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When PI3K (phosphatidylinositol-3 kinase) is activated by receptor tyrosine kinases, it phosphorylates PIP2 to generate PIP3 and activates the signaling pathway. Phosphatase and tensin homolog deleted on chromosome 10 dephosphorylates PIP3 to PIP2, and thus, negatively regulates the pathway. AKT (v-akt murine thymoma viral oncogene homolog; protein kinase B) is activated downstream of PIP3 and mediates physiological processes. Furthermore, substantial crosstalk exists with other signaling networks at all levels of the PI3K pathway. Because of its diverse array, gene mutations, and amplifications and also as a consequence of its central role in several signal transduction pathways, the PI3K-dependent axis is frequently activated in many tumors and is an attractive therapeutic target. The preclinical testing and analysis of these novel therapies requires appropriate and well-tailored systems. Mouse models in which this pathway has been genetically modified have been essential in understanding the role that this pathway plays in the tumorigenesis process. Here, we review cancer mouse models in which the PI3K/AKT pathway has been genetically modified.
    Frontiers in oncology. 01/2014; 4:252.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oleanolic acid (OA) derivatives exhibit numerous pleiotropic effects in many cancers. The present study aimed to investigate the molecular mechanisms of 5'-amino-oleana-2,12-dieno[3,2-d]pyrimidin-28-oic acid (compound 4) and oleana-2,12-dieno[2,3-d]isoxazol-28-oic acid (compound 5) inducing apoptosis in human leukemia K562 cell. We investigated the effects of the compounds on K562 cell growth, apoptosis and cell cycle. The compounds showed strong inhibitory effects on K562 cell viability in a dose-dependent manner determined by the 3-(4,5-dimethylthiazoyl)-2,5-diphenyltetrazolium bromide assay and significantly increased chromatin condensation and apoptotic bodies in K562 cells. Flow cytometry assay suggested that the compounds induced inhibition of K562 cell proliferation associated with G1 phase arrest. In addition, the compounds inhibited Akt1 recruiting to membrane in CHO cells which express Akt1-EGFP constitutively and down-regulated the expression of pAkt1 in K562 cell. These results suggested that the compounds can efficiently inhibit proliferation and induce apoptosis perhaps involved in inactivation of Akt1. The OA derivatives may be potential chemotherapeutic agents for the treatment of human cancer.
    Cytotechnology 04/2014; · 1.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of novel targets that can be pharmacologically exploited to lead to a better disease outcome has long been an aim of biomedical research. At present, the technology and robotisation available have pushed the search for novel molecules to a high-throughput screening (HTS) context, making it possible to screen several hundreds of compounds or genes in a single day. High-content screenings (HCS) have added a refined complexity to the screening processes, as the information drawn from an image-based assay is more complete than the monoparametric readouts obtained in classical HTS assays. Here, we review the development of HCS platforms to identify molecules influencing FOXO nuclear relocation and activation as pharmacological targets, their applicability and the future directions of the screening field.
    Clinical and Translational Oncology 10/2009; 11(10):651-658. · 1.28 Impact Factor


Available from
May 21, 2014

Oliver Renner