Article

Deletion of striatal adenosine A2A receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning

Laboratory of Behavioral Neurobiology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
Behavioural brain research (Impact Factor: 3.39). 12/2012; 242. DOI: 10.1016/j.bbr.2012.12.024
Source: PubMed

ABSTRACT Following early clinical leads, the adenosine A(2A)R receptor (A(2A)R) has continued to attract attention as a potential novel target for treating schizophrenia; especially against the negative and cognitive symptoms of the disease because of A(2A)R's unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through the antagonistic interaction with the dopamine D(2) receptor, and by regulating glutamate release and N-methyl-d-aspartate receptor function, striatal A(2A)R is ideally positioned to fine-tune the dopamine-glutamate balance whose disturbance is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A(2A)Rsin the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A(2A)R knockout (st-A(2A)R-KO) on latent inhibition (LI) and prepulse inhibition (PPI)-behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A(2A)R-KO mice; although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning-conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A(2A)Rs-a finding that may undermine the hypothesized importance of A(2A)R in the genesis and/or treatment of schizophrenia.

Full-text

Available from: Benjamin K Yee, Jun 07, 2015
0 Followers
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes regulate multiple processes in the brain ranging from trophic support of developing neurons to modulation of synaptic neurotransmission and neuroinflammation in adulthood. It is, therefore, understandable that pathogenesis and pathophysiology of major psychiatric disorders involve astrocyte dysfunctions. Until recently, there has been the paucity of experimental approaches to studying the roles of astrocytes in behavioral disease. A new generation of in vivo models allows us to advance our understanding of the roles of astrocytes in psychiatric disorders. This review will evaluate the recent studies that focus on the contribution of astrocyte dysfunction to behavioral alterations pertinent to schizophrenia and will propose the possible solutions of the limitations of the existing approaches.
    Schizophrenia Research 11/2014; DOI:10.1016/j.schres.2014.10.044 · 4.43 Impact Factor
  • Source
    Frontiers in Behavioral Neuroscience 10/2014; 8. DOI:10.3389/fnbeh.2014.00372 · 4.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stimulation or blockade of dopaminergic activity interrupts or increases, respectively, the phenomenon of latent inhibition in different paradigms. Furthermore, the involvement of the nucleus accumbens in latent inhibition has been demonstrated in several learning paradigms, including conditioned taste aversion. However, the role of the dorsal striatum in the pre-exposure effect on the acquisition of taste aversion remains unclear. In order to determine whether this region of the striatum is a structure necessary for latent inhibition of conditioned taste aversion, excitotoxic lesions were made in the posterior part of the dorsal striatum of Wistar rats. Subsequently, half of the animals was pre-exposed to the flavor, and the magnitude of the taste aversion was compared to that of sham animals pre-exposed and non-pre-exposed to the same flavor. The results showed that the excitotoxic lesion in this area of the dorsal striatum, compared to sham animals, left latent inhibition of the conditioned taste aversion intact. These data suggest that the posterior part of the dorsal striatum is not necessary for the acquisition of latent inhibition, at least in the conditioned taste aversion paradigm.
    Neuroscience Research 09/2014; 91. DOI:10.1016/j.neures.2014.09.006 · 2.15 Impact Factor