Time-Integrated Fluorescence Cumulant Analysis and Its Application in Living Cells

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA
Methods in enzymology (Impact Factor: 2.19). 01/2013; 518C:99-119. DOI: 10.1016/B978-0-12-388422-0.00005-4
Source: PubMed

ABSTRACT Time-integrated fluorescence cumulant analysis (TIFCA) is a data analysis technique for fluorescence fluctuation spectroscopy (FFS) that extracts information from the cumulants of the integrated fluorescence intensity. It is the first exact theory that describes the effect of sampling time on FFS experiment. Rebinning of data to longer sampling times helps to increase the signal/noise ratio of the experimental cumulants of the photon counts. The sampling time dependence of the cumulants encodes both brightness and diffusion information of the sample. TIFCA analysis extracts this information by fitting the cumulants to model functions. Generalization of TIFCA to multicolor FFS experiment is straightforward. Here, we present an overview of the theory, its implementation, as well as the benefits and requirements of TIFCA. The questions of why, when, and how to use TIFCA will be discussed. We give several examples of practical applications of TIFCA, particularly focused on measuring molecular interaction in living cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence fluctuation spectroscopy (FFS) techniques provide information at the single-molecule level with excellent time resolution. Usually applied at a single spot in a sample, they have been recently extended into imaging formats, referred to as imaging FFS. They provide spatial information at the optical diffraction limit and temporal information in the microsecond to millisecond range. This review provides an overview of the different modalities in which imaging FFS techniques have been implemented and discusses present imaging FFS capabilities and limitations. A combination of imaging FFS and nanoscopy would allow one to record information with the detailed spatial information of nanoscopy, which is ∼20 nm and limited only by fluorophore size and labeling density, and the time resolution of imaging FFS, limited by the fluorescence lifetime. This combination would provide new insights into biological events by providing spatiotemporal resolution at unprecedented levels. Expected final online publication date for the Annual Review of Physical Chemistry Volume 65 is March 31, 2014. Please see for revised estimates.
    Annual Review of Physical Chemistry 12/2013; 65(1). DOI:10.1146/annurev-physchem-040513-103641 · 15.68 Impact Factor