Article

Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession

Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.
Neurobiology of aging (Impact Factor: 4.85). 12/2012; 34(6). DOI: 10.1016/j.neurobiolaging.2012.11.020
Source: PubMed

ABSTRACT Impaired brain energy metabolism and oxidative stress are implicated in cognitive decline and the pathologic accumulations of amyloid β-peptide (Aβ) and hyperphosphorylated tau in Alzheimer's disease (AD). To determine whether improving brain energy metabolism will forestall disease progress in AD, the impact of the β-nicotinamide adenine dinucleotide precursor nicotinamide on brain cell mitochondrial function and macroautophagy, bioenergetics-related signaling, and cognitive performance were studied in cultured neurons and in a mouse model of AD. Oxidative stress resulted in decreased mitochondrial mass, mitochondrial degeneration, and autophagosome accumulation in neurons. Nicotinamide preserved mitochondrial integrity and autophagy function, and reduced neuronal vulnerability to oxidative/metabolic insults and Aβ toxicity. β-Nicotinamide adenine dinucleotide biosynthesis, autophagy, and phosphatidylinositol-3-kinase signaling were required for the neuroprotective action of nicotinamide. Treatment of 3xTgAD mice with nicotinamide for 8 months resulted in improved cognitive performance, and reduced Aβ and hyperphosphorylated tau pathologies in hippocampus and cerebral cortex. Nicotinamide treatment preserved mitochondrial integrity, and improved autophagy-lysosome procession by enhancing lysosome/autolysosome acidification to reduce autophagosome accumulation. Treatment of 3xTgAD mice with nicotinamide resulted in elevated levels of activated neuroplasticity-related kinases (protein kinase B [Akt] and extracellular signal-regulated kinases) and the transcription factor cyclic adenosine monophosphate (AMP) response element-binding protein in the hippocampus and cerebral cortex. Thus, nicotinamide suppresses AD pathology and cognitive decline in a mouse model of AD by a mechanism involving improved brain bioenergetics with preserved functionality of mitochondria and the autophagy system.

1 Follower
 · 
163 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We explore the role of DNA damage processing in the progression of cognitive decline by creating a new mouse model. The new model is a cross of a common Alzheimer's disease (AD) mouse (3xTgAD), with a mouse that is heterozygous for the critical DNA base excision repair enzyme, DNA polymerase ␤. A reduc-tion of this enzyme causes neurodegeneration and aggravates the AD features of the 3xTgAD mouse, in-ducing neuronal dysfunction, cell death and impair-ing memory and synaptic plasticity. Transcriptional profiling revealed remarkable similarities in gene ex-pression alterations in brain tissue of human AD pa-tients and 3xTg/Pol␤ +/− mice including abnormal-ities suggestive of impaired cellular bioenergetics. Our findings demonstrate that a modest decrement in base excision repair capacity can render the brain more vulnerable to AD-related molecular and cellular alterations.
    Nucleic Acids Research 12/2014; 43(2). DOI:10.1093/nar/gku1356 · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Strong consensus exists regarding the most robust environmental intervention for attenuating aging processes and increasing healthspan and lifespan: calorie restriction (CR). Over several decades, this paradigm has been replicated in numerous nonhuman models, and has been expanded over the last decade to formal, controlled human studies of CR. Given that long-term CR can create heavy challenges to compliance in human diets, the concept of a calorie restriction mimetic (CRM) has emerged as an active research area within gerontology. In past presentations on this subject, we have proposed that a CRM is a compound that mimics metabolic, hormonal, and physiological effects of CR, activates stress response pathways observed in CR and enhances stress protection, produces CR-like effects on longevity, reduces age-related disease, and maintains more youthful function, all without significantly reducing food intake, at least initially. Over 16 years ago, we proposed that glycolytic inhibition could be an effective strategy for developing CRM. The main argument here is that inhibiting energy utilization as far upstream as possible provides the highest chance of generating a broad spectrum of CR-like effects when compared to targeting a singular molecular target downstream. As an initial candidate CRM, 2-deoxyglucose, a known anti-glycolytic, was shown to produce a remarkable phenotype of CR, but further investigation found that this compound produced cardiotoxicity in rats at the doses we had been using. There remains interest in 2DG as a CRM but at lower doses. Beyond the proposal of 2DG as a candidate CRM, the field has grown steadily with many investigators proposing other strategies, including novel anti-glycolytics. Within the realm of upstream targeting at the level of the digestive system, research has included bariatric surgery, inhibitors of fat digestion/absorption, and inhibitors of carbohydrate digestion. Research focused on downstream sites has included insulin receptors, IGF-1 receptors, sirtuin activators, inhibitors of mTOR, and polyamines. In the current review we discuss progress made involving these various strategies and comment on the status and future for each within this exciting research field.
    Ageing Research Reviews 12/2014; 20. DOI:10.1016/j.arr.2014.11.005 · 7.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial dysfunction is a hallmark of neurodegenerative diseases including Alzheimer's disease (AD), with morphological and functional abnormalities limiting the electron transport chain and ATP production. A contributing factor of mitochondrial abnormalities is loss of nicotinamide adenine dinucleotide (NAD), an important cofactor in multiple metabolic reactions. Depletion of mitochondrial and consequently cellular NAD(H) levels by activated NAD glycohydrolases then culminates in bioenergetic failure and cell death. De Novo NAD(+) synthesis from tryptophan requires a multi-step enzymatic reaction. Thus, an alternative strategy to maintain cellular NAD(+) levels is to administer NAD(+) precursors facilitating generation via a salvage pathway. We administered nicotinamide mononucleotide (NMN), an NAD(+) precursor to APP(swe)/PS1(ΔE9) double transgenic (AD-Tg) mice to assess amelioration of mitochondrial respiratory deficits. In addition to mitochondrial respiratory function, we examined levels of full-length mutant APP, NAD(+)-dependent substrates (SIRT1 and CD38) in homogenates and fission/fusion proteins (DRP1, OPA1 and MFN2) in mitochondria isolated from brain. To examine changes in mitochondrial morphology, bigenic mice possessing a fluorescent protein targeted to neuronal mitochondria (CaMK2a-mito/eYFP), were administered NMN. Mitochondrial oxygen consumption rates were examined in N2A neuroblastoma cells and non-synaptic brain mitochondria isolated from mice (3 months). Western blotting was utilized to assess APP, SIRT1, CD38, DRP1, OPA1 and MFN2 in brain of transgenic and non-transgenic mice (3-12 months). Mitochondrial morphology was assessed with confocal microscopy. One-way or two-way analysis of variance (ANOVA) and post-hoc Holm-Sidak method were used for statistical analyses of data. Student t-test was used for direct comparison of two groups. We now demonstrate that mitochondrial respiratory function was restored in NMN-treated AD-Tg mice. Levels of SIRT1 and CD38 change with age and NMN treatment. Furthermore, we found a shift in dynamics from fission to fusion proteins in the NMN-treated mice. This is the first study to directly examine amelioration of NAD(+) catabolism and changes in mitochondrial morphological dynamics in brain utilizing the immediate precursor NMN as a potential therapeutic compound. This might lead to well-defined physiologic abnormalities that can serve an important role in the validation of promising agents such as NMN that target NAD(+) catabolism preserving mitochondrial function.
    BMC Neurology 03/2015; 15(1):272. DOI:10.1186/s12883-015-0272-x · 2.49 Impact Factor

Full-text (2 Sources)

Download
99 Downloads
Available from
Jun 4, 2014