Polypharmacology: drug discovery for the future.

Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA.
Expert Review of Clinical Pharmacology 01/2013; 6(1):41-7. DOI: 10.1586/ecp.12.74
Source: PubMed

ABSTRACT In recent years, even with remarkable scientific advancements and a significant increase of global research and development spending, drugs are frequently withdrawn from markets. This is primarily due to their side effects or toxicities. Drug molecules often interact with multiple targets, coined as polypharmacology, and the unintended drug-target interactions could cause side effects. Polypharmacology remains one of the major challenges in drug development, and it opens novel avenues to rationally design the next generation of more effective, but less toxic, therapeutic agents. This review outlines the latest progress and challenges in polypharmacology studies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids.
    Marine Drugs 03/2015; 13(3):1105-1123. DOI:10.3390/md13031105 · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt-nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt-NF-κB and mitogen-activated protein kinases (MAPKs) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt-NF-κB and MAPKs signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy.
    Toxicology and Applied Pharmacology 08/2013; 272:616–624. DOI:10.1016/j.taap.2013.07.014 · 3.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polypharmacology describes the activity of compounds at multiple targets. Current research focuses on two aspects of polypharmacology: (1) unintended polypharmacology can lead to adverse effects; (2) polypharmacology across several disease-relevant targets can improve therapeutic efficacy, can prevent drug resistance, or can reduce therapeutic-target-related adverse effects. This perspective reviews these interconnected aspects of polypharmacology. The first part discusses the relevance of polypharmacology for the safety of drugs, the mitigation of safety risks, and methods to identify polypharmacological compounds early in the drug discovery process. The second part discusses the advantages of polypharmacology in the treatment of multigenic diseases and infections, and opportunities for drug discovery and drug repurposing. This perspective aims to provide a balanced view on polypharmacology, which can compromise the safety of drugs, but can also confer superior efficacy.
    Journal of Medicinal Chemistry 08/2013; 56(22). DOI:10.1021/jm400856t · 5.48 Impact Factor