Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR

Journal of Cardiovascular Magnetic Resonance (Impact Factor: 4.44). 12/2012; 14(1):88. DOI: 10.1186/1532-429X-14-88
Source: PubMed

ABSTRACT BACKGROUND: Myocardial extracellular volume (ECV) is elevated in fibrosis or infiltration and can be quantified by measuring the haematocrit with pre and post contrast T1 at sufficient contrast equilibrium. Equilibrium CMR (EQ-CMR), using a bolus-infusion protocol, has been shown to provide robust measurements of ECV using a multibreath-hold T1 pulse sequence. Newer, faster sequences for T1 mapping promise whole heart coverage and improved clinical utility, but have not been validated. METHODS: Multibreathhold T1 quantification with heart rate correction and single breath-hold T1 mapping using Shortened Modified Look-Locker Inversion recovery (ShMOLLI) were used in equilibrium contrast CMR to generate ECV values and compared in 3 ways.Firstly, both techniques were compared in a spectrum of disease with variable ECV expansion (n=100, 50 healthy volunteers, 12 patients with hypertrophic cardiomyopathy, 18 with severe aortic stenosis, 20 with amyloid). Secondly, both techniques were correlated to human histological collagen volume fraction (CVF%, n=18, severe aortic stenosis biopsies). Thirdly, an assessment of test:retest reproducibility of the 2 CMR techniques was performed 1 week apart in individuals with widely different ECVs (n=10 healthy volunteers, n=7 amyloid patients). RESULTS: More patients were able to perform ShMOLLI than the multibreath-hold technique (6% unable to breath-hold). ECV calculated by multibreath-hold T1 and ShMOLLI showed strong correlation (r2=0.892), little bias (bias -2.2%, 95%CI -8.9% to 4.6%) and good agreement (ICC 0.922, range 0.802 to 0.961, p<0.0001). ECV correlated with histological CVF% by multibreath-hold ECV (r2= 0.589) but better by ShMOLLI ECV (r2= 0.685). Inter-study reproducibility demonstrated that ShMOLLI ECV trended towards greater reproducibility than the multibreath-hold ECV, although this did not reach statistical significance (95%CI -4.9% to 5.4% versus 95%CI -6.4% to 7.3% respectively, p=0.21). CONCLUSIONS: ECV quantification by single breath-hold ShMOLLI T1 mapping can measure ECV by EQ-CMR across the spectrum of interstitial expansion. It is procedurally better tolerated, slightly more reproducible and better correlates with histology compared to the older multibreath-hold FLASH techniques.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular magnetic resonance (CMR) derived native myocardial T1 is decreased in patients with Fabry disease even before left ventricular hypertrophy (LVH) occurs and may be the first non-invasive measure of myocyte sphingolipid storage. The relationship of native T1 lowering prior to hypertrophy and other candidate early phenotype markers are unknown. Furthermore, the reproducibility of T1 mapping has never been assessed in Fabry disease. Sixty-three patients, 34 (54%) female, mean age 48 ± 15 years with confirmed (genotyped) Fabry disease underwent CMR, ECG and echocardiographic assessment. LVH was absent in 25 (40%) patients. Native T1 mapping was performed with both Modified Look-Locker Inversion recovery (MOLLI) sequences and a shortened version (ShMOLLI) at 1.5 Tesla. Twenty-one patients underwent a second scan within 24 hours to assess inter-study reproducibility. Results were compared with 63 healthy age and gender-matched volunteers. Mean native T1 in Fabry disease (LVH positive), (LVH negative) and healthy volunteers was 853 ± 50 ms, 904 ± 46 ms and 968 ± 32 ms (for all p < 0.0001) by ShMOLLI sequences. Native T1 showed high inter-study, intra-observer and inter-observer agreement with intra-class correlation coefficients (ICC) of 0.99, 0.98, 0.97 (ShMOLLI) and 0.98, 0.98, 0.98 (MOLLI). In Fabry disease LVH negative individuals, low native T1 was associated with reduced echocardiographic-based global longitudinal speckle tracking strain (-18 ± 2% vs -22 ± 2%, p = 0.001) and early diastolic function impairment (E/E' = 7 [6-8] vs 5 [5-6], p = 0.028). Native T1 mapping in Fabry disease is a reproducible technique. T1 reduction prior to the onset of LVH is associated with early diastolic and systolic changes measured by echocardiography.
    Journal of Cardiovascular Magnetic Resonance 12/2014; 16:99. DOI:10.1186/s12968-014-0099-4 · 4.44 Impact Factor
  • Circulation Cardiovascular Imaging 11/2014; 7(6):860-2. DOI:10.1161/CIRCIMAGING.114.002700 · 5.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac involvement drives the prognosis and treatment in systemic amyloid. Echocardiography, the mainstay of current cardiac imaging, defines cardiac structure and function. Echocardiography, in conjunction with clinical phenotype, electrocardiogram and biomarkers (brain natriuretic peptide and troponin), provides an assessment of the likelihood and extent of cardiac involvement. Two tests are transforming our understanding of cardiac amyloidosis, bone tracer scanning and cardiovascular magnetic resonance (CMR). CMR provides a "second opinion" on the heart's structure and systolic function with better accuracy and more precision than echocardiography but is unable to assess diastolic function and is not as widely available. Where CMR adds unique advantages is in evaluating myocardial tissue characterisation. With administration of contrast, the latest type of late gadolinium enhancement imaging (phase-sensitive inversion recovery sequence) is highly sensitive and specific with images virtually pathognomonic for amyloidosis. CMR is also demonstrating that the range of structural and functional changes in cardiac amyloid is broader than traditionally thought. CMR with T1 mapping, a relatively new CMR technique, can measure the amyloid burden and the myocyte response to infiltration (hypertrophy/cell loss) with advantages for tracking change (e.g. the wall thickness can stay the same but the composition can change) over time or during therapy. Such techniques hold great promise for advancing drug development in this arena and providing new prognostic insights. CMR with tissue characterisation is rewriting our understanding of cardiac amyloidosis and may lead to the development of new classification, therapies and prognostic systems.
    Heart Failure Reviews 12/2014; 20(2). DOI:10.1007/s10741-014-9470-7 · 3.99 Impact Factor

Full-text (3 Sources)

Available from
May 16, 2014