RelAp43, a Member of the NF-κB Family Involved in Innate Immune Response against Lyssavirus Infection

Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.
PLoS Pathogens (Impact Factor: 8.06). 12/2012; 8(12):e1003060. DOI: 10.1371/journal.ppat.1003060
Source: PubMed

ABSTRACT NF-κB transcription factors are crucial for many cellular processes. NF-κB is activated by viral infections to induce expression of antiviral cytokines. Here, we identified a novel member of the human NF-κB family, denoted RelAp43, the nucleotide sequence of which contains several exons as well as an intron of the RelA gene. RelAp43 is expressed in all cell lines and tissues tested and exhibits all the properties of a NF-κB protein. Although its sequence does not include a transactivation domain, identifying it as a class I member of the NF-κB family, it is able to potentiate RelA-mediated transactivation and stabilize dimers comprising p50. Furthermore, RelAp43 stimulates the expression of HIAP1, IRF1, and IFN-β - three genes involved in cell immunity against viral infection. It is also targeted by the matrix protein of lyssaviruses, the agents of rabies, resulting in an inhibition of the NF-κB pathway. Taken together, our data provide the description of a novel functional member of the NF-κB family, which plays a key role in the induction of anti-viral innate immune response.

Download full-text


Available from: Frederic Tangy, Sep 01, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To characterize proteins that bind to the immunoglobulin (Ig) heavy chain and the kappa light chain enhancers, an electrophoretic mobility shift assay with end-labeled DNA fragments was used. Three binding proteins have been found. One is NF-A, a factor found in all tested cell types that binds to the octamer sequence found upstream of all Ig variable region gene segments and to the same octamer in the heavy chain enhancer. The second, also ubiquitous, protein binds to a sequence in both the heavy chain and the kappa enhancers that was previously shown to be protected from methylation in vivo. Other closely related sites do not compete for this binding, implying a restriction enzyme-like binding specificity. The third protein binds to a sequence in the kappa enhancer (and to an identical sequence in the SV40 enhancer) and is restricted in its occurrence to B cells.
    Cell 09/1986; 46(5):705-16. DOI:10.1016/0092-8674(86)90346-6 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NF-κB transcription factors are critical regulators of immunity, stress responses, apoptosis and differentiation. A variety of stimuli coalesce on NF-κB activation, which can in turn mediate varied transcriptional programs. Consequently, NF-κB-dependent transcription is not only tightly controlled by positive and negative regulatory mechanisms but also closely coordinated with other signaling pathways. This intricate crosstalk is crucial to shaping the diverse biological functions of NF-κB into cell type- and context-specific responses.
    Nature Immunology 07/2011; 12(8):695-708. DOI:10.1038/ni.2065 · 24.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of transcription factor NF-kappaB can affect the expression of several hundred genes, many of which are involved in inflammation and immunity. The proper NF-kappaB transcriptional response is primarily regulated by post-translational modification of NF-kappaB signaling constituents. Herein, we review the accumulating evidence suggesting that alternative splicing of NF-kappaB signaling components is another means of controlling NF-kappaB signaling. Several alternative splicing events in both the tumor necrosis factor and Toll/interleukin-1 NF-kappaB signaling pathways can inhibit the NF-kappaB response, whereas others enhance NF-kappaB signaling. Alternative splicing of mRNAs encoding some NF-kappaB signaling components can be induced by prolonged exposure to an NF-kappaB-activating signal, such as lipopolysaccharide, suggesting a mechanism for negative feedback to dampen excessive NF-kappaB signaling. Moreover, some NF-kappaB alternative splicing events appear to be specific for certain diseases, and could serve as therapeutic targets or biomarkers.
    Gene 08/2008; 423(2):97-107. DOI:10.1016/j.gene.2008.07.015 · 2.08 Impact Factor
Show more