Article

ATARiS: Computational quantification of gene suppression phenotypes from multisample RNAi screens

Broad Institute of MIT & Harvard
Genome Research (Impact Factor: 13.85). 12/2012; 23(4). DOI: 10.1101/gr.143586.112
Source: PubMed

ABSTRACT Genome-scale RNAi libraries enable the systematic interrogation of gene function. However, the interpretation of RNAi screens is complicated by the observation that RNAi reagents designed to suppress the mRNA transcripts of the same gene often produce a spectrum of phenotypic outcomes due to differential on-target gene suppression or perturbation of off-target transcripts. Here we present a computational method, Analytic Technique for Assessment of RNAi by Similarity (ATARiS), that takes advantage of patterns in RNAi data across multiple samples in order to enrich for RNAi reagents whose phenotypic effects relate to suppression of their intended targets. By summarizing only such reagent effects for each gene, ATARiS produces quantitative, gene-level phenotype values, which provide an intuitive measure of the effect of gene suppression in each sample. This method is robust for datasets that contain as few as ten samples and can be used to analyze screens of any number of targeted genes. We used this analytic approach to interrogate RNAi data derived from screening more than 100 human cancer cell lines and identified HNF1B as a transforming oncogene required for the survival of cancer cells that harbor HNF1B amplifications.

Download full-text

Full-text

Available from: Aviad Tsherniak, Aug 26, 2015
2 Followers
 · 
165 Views
  • Source
    • "To mitigate these effects, analytical approaches have been developed that look for phenotypic consistency across multiple hairpins targeting a gene (Luo et al, 2008; Cheung et al, 2011; Marcotte et al, 2012) and among the same hairpins in different screens (Shao et al, 2013). Not surprisingly, different approaches can yield different results, and the degree to which false positives contaminate results is largely unknown (Kaelin, 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Technological advancement has opened the door to systematic genetics in mammalian cells. Genome-scale loss-of-function screens can assay fitness defects induced by partial gene knockdown, using RNA interference, or complete gene knockout, using new CRISPR techniques. These screens can reveal the basic blueprint required for cellular proliferation. Moreover, comparing healthy to cancerous tissue can uncover genes that are essential only in the tumor; these genes are targets for the development of specific anticancer therapies. Unfortunately, progress in this field has been hampered by off-target effects of perturbation reagents and poorly quantified error rates in large-scale screens. To improve the quality of information derived from these screens, and to provide a framework for understanding the capabilities and limitations of CRISPR technology, we derive gold-standard reference sets of essential and nonessential genes, and provide a Bayesian classifier of gene essentiality that outperforms current methods on both RNAi and CRISPR screens. Our results indicate that CRISPR technology is more sensitive than RNAi and that both techniques have nontrivial false discovery rates that can be mitigated by rigorous analytical methods.
    Molecular Systems Biology 07/2014; 10(7). DOI:10.15252/msb.20145216 · 14.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is a deadly disease with a five-year survival of less than 5%. A better understanding of the underlying biology may suggest novel therapeutic targets. Recent surveys of the pancreatic cancer genome have uncovered numerous new alterations; yet systematic functional characterization of candidate cancer genes has lagged behind. To address this challenge, here we have devised a highly-parallel RNA interference-based functional screen to evaluate many genomically-nominated candidate pancreatic cancer genes simultaneously. For 185 candidate pancreatic cancer genes, selected from recurrently altered genomic loci, we performed a pooled shRNA library screen of cell growth/viability across 10 different cell lines. Knockdown-associated effects on cell growth were assessed by enrichment or depletion of shRNA hairpins, by hybridization to barcode microarrays. A novel analytical approach (COrrelated Phenotypes for On-Target Effects; COPOTE) was used to discern probable on-target knockdown, based on identifying different shRNAs targeting the same gene and displaying concordant phenotypes across cell lines. Knockdown data were integrated with genomic architecture and gene-expression profiles, and selected findings validated using individual shRNAs and/or independent siRNAs. The pooled shRNA library design delivered reproducible data. In all, COPOTE analysis identified 52 probable on-target gene-knockdowns. Knockdown of known oncogenes (KRAS, MYC, SMURF1 and CCNE1) and a tumor suppressor (CDKN2A) showed the expected contrasting effects on cell growth. In addition, the screen corroborated purported roles of PLEKHG2 and MED29 as 19q13 amplicon drivers. Most notably, the analysis also revealed novel possible oncogenic functions of nucleoporin NUP153 (ostensibly by modulating TGFbeta signaling) and Kruppel-like transcription factor KLF5 in pancreatic cancer. By integrating physical and functional genomic data, we were able to simultaneously evaluate many candidate pancreatic cancer genes. Our findings uncover new facets of pancreatic cancer biology, with possible therapeutic implications. More broadly, our study provides a general strategy for the efficient characterization of candidate genes emerging from cancer genome studies.
    BMC Genomics 09/2013; 14(1):624. DOI:10.1186/1471-2164-14-624 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference has become an indispensable tool for loss-of-function studies across eukaryotes. By enabling stable and reversible gene silencing, shRNAs provide a means to study long-term phenotypes, perform pool-based forward genetic screens and examine the consequences of temporary target inhibition in vivo. However, efficient implementation in vertebrate systems has been hindered by technical difficulties affecting potency and specificity. Focusing on these issues, we analyse current strategies to obtain maximal knockdown with minimal off-target effects.
    Nature Cell Biology 12/2013; 16(1):10-8. DOI:10.1038/ncb2895 · 20.06 Impact Factor
Show more