Biotin-responsive basal ganglia disease revisited: Clinical, radiologic, and genetic findings

From the Divisions of Pediatric Neurology (B.T., S. Al-Shafi, S. Al-Shahwan) and Genetics (A.A.-H.), Department of Pediatrics
Neurology (Impact Factor: 8.3). 12/2012; 80(3). DOI: 10.1212/WNL.0b013e31827deb4c
Source: PubMed

ABSTRACT OBJECTIVE: To investigate the clinical, genetic, and neuroradiologic data of biotin-responsive basal ganglia disease (BBGD) and clarify the disease spectrum. METHODS: We first investigated all patients attending our Division of Pediatric Neurology with a genetically proven diagnosis of BBGD between 2009 and 2011. All patients underwent a detailed medical history and clinical examination, extensive laboratory investigations including genetic tests, and brain MRI. Finally, we conducted a systematic review of the literature. RESULTS: We enrolled 10 patients meeting the diagnostic criteria for BBGD, and analyzed the data on 14 patients from 4 previous reports. The BBGD occurred predominantly in preschool/school-aged patients in the Saudi population, but it was also observed in other ethnic groups. The typical clinical picture consisted of recurrent subacute encephalopathy leading to coma, seizures, and extrapyramidal manifestations. The brain MRI typically showed symmetric and bilateral lesions in the caudate nucleus and putamen, infra- and supratentorial brain cortex, and in the brainstem. Vasogenic edema characterized the acute crises as demonstrated by diffusion-weighted imaging/apparent diffusion coefficient MRI. Atrophy and gliosis in the affected regions were observed in patients with chronic disease. Early treatment with a combination of biotin and thiamine resulted in clinical and neuroradiologic improvement. Death and neurologic sequelae including dystonia, mental retardation, and epilepsy were observed in those who were not treated or were treated late. CONCLUSION: BBGD is an underdiagnosed pan-ethnic treatable condition. Clinicians caring for patients with unexplained encephalopathy and neuroimaging showing vasogenic edema in the bilateral putamen and caudate nuclei, infra- and supratentorial cortex, and brainstem should consider this disorder early in the hospital course because a therapeutic trial with biotin and thiamine can be lifesaving.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Like so many complex and incurable neurological disorders, the disease first described in this journal in 1951 by (Archibald) Denis Leigh (1915-1998; figure 1) as ‘Subacute Necrotising Encephalomyelopathy’ (SNE)1 remained for many years a rare and intriguing enigma, of interest mainly to paediatric neurologists and neuropathologists. The more recent history of this disorder, now designated Leigh syndrome (LS) in view of its heterogeneity, exemplifies the revolution in clinical neurosciences, culminating in the understanding of the consequences of multiple mitochondrial defects through fundamental insights derived from molecular genetics, and attributing LS to a tale of two genomes, that is, to mutations in the mitochondrial DNA (mtDNA) or to nuclear DNA.2
    Journal of Neurology Neurosurgery & Psychiatry 01/2015; 86(4). DOI:10.1136/jnnp-2012-304601 · 5.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biotin-thiamine responsive basal ganglia disease (BTBGD) is a rare metabolic condition caused by mutations in the SLC19A3 gene. BTBGD presents with encephalopathy and significant disease progression when not treated with biotin and/or thiamine. We present a patient of Mexican and European ancestry diagnosed with BTBGD found to have compound heterozygous frameshift mutations, one novel. Our report adds to the genotype-phenotype correlation, highlighting the clinical importance of considering SLC19A3 gene defects as part of the differential diagnosis for Leigh syndrome.
    01/2014; 1:368–372. DOI:10.1016/j.ymgmr.2014.07.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infantile movement disorders are rare and genetically heterogeneous. We set out to identify the disease-causing mutation in siblings with a novel recessive neurodegenerative movement disorder. Genetic linkage analysis and whole-exome sequencing were performed in the original family. A cohort of six unrelated patients were sequenced for further mutations in the identified candidate gene. Pathogenicity of the mutation was evaluated by in silico analyses and by structural modeling. We identified the first and homozygous mutation (p.Gly114Ala) in the Mediator subunit 20 gene (MED20) in siblings presenting with infantile-onset spasticity and childhood-onset dystonia, progressive basal ganglia degeneration, and brain atrophy. Mediator refers to an evolutionarily conserved multi-subunit RNA polymerase II co-regulatory complex. Pathogenicity of the identified missense mutation is suggested by in silico analyses, by structural modeling, and by previous reporting of mutations in four distinct Mediator subunits causing neurodegenerative phenotypes. No further MED20 mutations were detected in this study. Conclusion: We delineate a novel infantile-onset neurodegenerative movement disorder and emphasize the Mediator complex as critical for normal neuronal function. Definitive proof of pathogenicity of the identified MED20 mutation will require confirmation in unrelated patients.
    European Journal of Pediatrics 12/2014; 174(1). DOI:10.1007/s00431-014-2463-7 · 1.98 Impact Factor