Fuel cell electric vehicles and hydrogen infrastructure: status 2012

Energy & Environmental Science (Impact Factor: 15.49). 07/2012; 5(10):8790-8798. DOI: 10.1039/C2EE22596D

ABSTRACT Within the framework of this publication, a brief motivation for hydrogen as an automotive energy carrier is provided and recent technology status and activities in the field of fuel cell electric vehicles (FCEV) and hydrogen infrastructure are described. To do so, current hydrogen vehicles by General Motors and Opel (such as the HydroGen4) as well as current and upcoming technologies are presented. In addition, well-to-wheel efficiencies considering different energy mixes and driving profiles for various electric powertrains (including E-REV vehicles like the Chevrolet Volt and its VOLTEC system) are briefly discussed.

This paper is a follow-up study to a previous article on the same topic published in 2007: “Fuel Cell Vehicles: Technology Status 2007” by R.v.H. und U.E. [1]. Although providing also an overall picture, that publication was focused on issues of hydrogen storage and vehicle demonstration programs. The current publication, on the other hand, will illustrate the progress made in the meantime, and will primarily deal with the fuel cell system and the planned hydrogen infrastructure roll-out for the early FCEV commercialization in the 2015-2020 timeframe. For that reason, some insight into the hydrogen infrastructure and recent results of infrastructure and technology readiness studies will be presented, including those of the “H2Mobility” coalition, which comprises major automotive, energy, and technology companies.


  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mgPt/cm(2) - well below the value of 0.125 mgPt/cm(2) set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 gPGM/kW) at cell potential 0.65 V: a value of 0.15 gPt/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 gPt/kW at 35 psig back pressure.
    Scientific Reports 07/2013; 3:2257. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Graphene-based materials have generated tremendous interest in a wide range of research activities. A wide variety of graphene related materials have been synthesised for potential applications in electronics, energy storage, catalysis, and gas sorption, storage, separation and sensing. Recently, gas sorption, storage and separation in porous nanocarbons and metal–organic frameworks have received increasing attention. In particular, the tuneable porosity, surface area and functionality of the lightweight and stable graphene- based materials open up great scope for those applications. Such structural features can be achieved by the design and control of the synthesis routes. Here, we highlight recent progresses and challenges in the syntheses of graphene-based materials with hierarchical pore structures, tuneable high surface area, chemical doping and surface functionalization for gas (H2, CH4, CO2, N2, NH3, NO2, H2S, SO2, etc.) sorption, storage and separation.
    Progress in Materials Science 04/2015; 69. · 25.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of new infrastructure is often a consideration in the introduction of new innovations. Currently there is some confusion around how to develop a hydrogen infrastructure to support the introduction of FCVs. Lessons can be learned from similar technology introduction in the past and therefore this paper investigates how mobile phone infrastructure was developed allowing the mass-market penetration of mobile phones. Based on this successful infrastructural development suggestions can be made on the development of a hydrogen infrastructure. It is suggested that a hydrogen infrastructure needs to be pre-developed 3–5 years before the market introduction of FCVs can successfully occur. A lack of infrastructural pre-development will cause to the market introduction of FCVs to fail.
    International Journal of Hydrogen Energy 05/2014; 39(16):8185–8193. · 2.93 Impact Factor


Available from
Jun 4, 2014