Article

Receptor tyrosine kinase signaling mechanisms: Devolving TrkA responses with phosphoproteomics

Dept. Pharmaceutical Chemistry, University of California, San Francisco, CA, USA. Electronic address: .
Advances in biological regulation 11/2012; 53(1). DOI: 10.1016/j.jbior.2012.10.006
Source: PubMed

ABSTRACT Receptor tyrosine kinases (RTKs) function through protein kinase entities located in the intracellular domain of each protomer. Following activation by ligand binding, they selectively form phosphotyrosine residues by autocatalytic modification. Some of these sites are involved in maintaining the active conformation of the kinase, while others become docking sites for various adaptor/effector/scaffold proteins, which, after complexing with the receptor, then initiate further responses through cascades of post-translational modifications and the generation of lipid second messengers. Although there is substantial overlap in the pathways and activities stimulated by this superfamily, the molecular features of the endodomains of the sub-families and the moieties that they interact with to perpetrate their signals are surprisingly distinct, which may play a significant role in the regulation and responses of the individual RTK types. Some use large scaffold proteins as the basis for most, if not all, of their signal-generating interactions, while others have numerous receptor endodomain phosphotyrosine sites that are quite overlapping in specificity. The members of the Trk family of receptors each have several tyrosine residues that are phosphorylated following stimulation, including those in the kinase activation loop, but there are only two established sites (Y490 and Y785 on TrkA) that are known to be directly involved in signal propagation. Taking advantage of this limited repertoire of docking sites, we have applied phosphoproteomic methods to dissect the signaling responses of both the native protein and derivatives that have had these two sites modified. Interestingly, a clear subset that was not dependent on either docking site was identified. A comparison with a similar set of data for EGFR indicates a considerable degree of similarity in the downstream signaling profile between these two RTKs.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PC12-27, a PC12 clone characterized by high levels of the transcription repressor REST and by very low mTORC2 activity, had been shown to be unresponsive to NGF, possibly because of its lack of the specific TrkA receptor. The neurotrophin receptor repressed by high REST in PC12-27 cells, however, is shown now to be not TrkA, which is normal, but p75(NTR), whose expression is inhibited at the transcriptional level. When treated with NGF, the PC12-27 cells lacking p75(NTR) exhibited a defective TrkA autophosphorylation restricted, however, to the TrkA(Y490) site, and an impairment of the PI3K signaling cascade. This defect was sustained in part by a mTORC1-dependent feed-back inhibition that in wtPC12 cells appeared marginal. Transfection of p75(NTR) to a level and surface distribution analogous to wtPC12 did not modify various high REST-dependent properties of PC12-27 cells such as high β-catenin, low TSC2 and high proliferation rate. In contrast, the defective PI3K signaling cascade and its associated mTORC2 activity were largely rescued together with the NGF-induced neurite outgrowth response. These changes were not due to p75(NTR) alone but required its cooperation with TrkA. Our results demonstrate that, in PC12, high REST induces alterations of NGF signaling which, however, are indirect, dependent on the repression of p75(NTR); and that the well-known potentiation by p75(NTR) of the TrkA signaling does not concern all the effects induced by NGF but primarily the PI3K cascade and its associated mTORC2, a complex known to play an important role in neural cell differentiation.
    08/2013; 2(8):855-66. DOI:10.1242/bio.20135116
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone cancers are characterised by the development of tumour cells in bone sites, associated with a dysregulation of their environment. In the last two decades, numerous therapeutic strategies have been developped to target the cancer cells or tumour niche. As the crosstalk between these two entities is thightly controlled by the release of polypeptide mediators activating signaling pathways through several receptor tyrosine kinases (RTKs), RTK inhibitors have been designed. These inhibitors have shown exciting clinical impacts, such as imatinib mesylate which has become a reference treatment for chronic myeloid leukaemia and gastrointestinal tumours. The present review gives an overview of the main molecular and functional characteristics of RTKs, and focuses on the clinical applications that are envisaged and already assessed for the treatment of bone sarcomas and bone metastases.
    01/2015; 5(1). DOI:10.1016/j.jbo.2015.01.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Various receptor tyrosine kinase (RTK) pathways were verified in many cancers including gastric cancer (GC), We sought to investigate the expression of RTKs including Her2, Her3, and Met and their transduction patterns in human GC. Over-expression of Her2, Her3, and c-Met in human GC was verified by immunohistochemistry leading to constitutive activation of RTK signaling pathways. Combined RTKs expression was valuable indicators for poor prognosis of GC patients. Using ErbB2 specific inhibitor Lapatinib and c-Met specific inhibitor PHA-665752, we further demonstrated that this constitutive activation of RTK signaling is necessary for the survival of GC cells. However, various RTK pattern: Her3/Her2 and Met/Her3 were verified in the transduction growth stimulus from outside via both AKT and MAPK signaling. Moreover, the essential roles of Her3 in both two heterodimers were obtained which showed significantly attenuated growth effect due to Her3 knockdown both in vitro and in vivo. In conclusion, various molecular transduction patterns: Her2/Her3 and Met/Her3 were verified in human GC, and Her3 could serve as a potential target in GC treatment. © 2014 Wiley Periodicals, Inc.
    Molecular Carcinogenesis 11/2014; DOI:10.1002/mc.22241 · 4.77 Impact Factor