Newborn Screening for SCID Identifies Patients with Ataxia Telangiectasia

Department of Pediatrics, University of California San Francisco, 513 Parnassus Avenue, HSE 301A, Box 0519, San Francisco, CA, 94143-0519, USA.
Journal of Clinical Immunology (Impact Factor: 3.18). 12/2012; 33(3). DOI: 10.1007/s10875-012-9846-1
Source: PubMed


Severe combined immunodeficiency (SCID) is characterized by failure of T lymphocyte development and absent or very low T cell receptor excision circles (TRECs), DNA byproducts of T cell maturation. Newborn screening for TRECs to identify SCID is now performed in several states using PCR of DNA from universally collected dried blood spots (DBS). In addition to infants with typical SCID, TREC screening identifies infants with T lymphocytopenia who appear healthy and in whom a SCID diagnosis cannot be confirmed. Deep sequencing was employed to find causes of T lymphocytopenia in such infants.

Whole exome sequencing and analysis were performed in infants and their parents. Upon finding deleterious mutations in the ataxia telangiectasia mutated (ATM) gene, we confirmed the diagnosis of ataxia telangiectasia (AT) in two infants and then tested archival newborn DBS of additional AT patients for TREC copy number.

Exome sequencing and analysis led to 2 unsuspected gene diagnoses of AT. Of 13 older AT patients for whom newborn DBS had been stored, 7 samples tested positive for SCID under the criteria of California’s newborn screening program. AT children with low neonatal TRECs had low CD4 T cell counts subsequently detected (R = 0.64).

T lymphocytopenia in newborns can be a feature of AT, as revealed by TREC screening and exome sequencing. Although there is no current cure for the progressive neurological impairment of AT, early detection permits avoidance of infectious complications, while providing information for families regarding reproductive recurrence risks and increased cancer risks in patients and carriers.

Download full-text


Available from: Antonia Kwan, Nov 12, 2014
1 Follower
42 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Assay of T-cell receptor excision circles (TRECs) in dried blood spots obtained at birth permits population-based newborn screening (NBS) for severe combined immunodeficiency (SCID). We sought to report the first 2 years of TREC NBS in California. Since August 2010, California has conducted SCID NBS. A high-throughput TREC quantitative PCR assay with DNA isolated from routine dried blood spots was developed. Samples with initial low TREC numbers had repeat DNA isolation with quantitative PCR for TRECs and a genomic control, and immunophenotyping was performed within the screening program for infants with incomplete or abnormal results. Outcomes were tracked. Of 993,724 infants screened, 50 (1/19,900 [0.005%]) had significant T-cell lymphopenia. Fifteen (1/66,250) required hematopoietic cell or thymus transplantation or gene therapy; these infants had typical SCID (n = 11), leaky SCID or Omenn syndrome (n = 3), or complete DiGeorge syndrome (n = 1). Survival to date in this group is 93%. Other T-cell lymphopenic infants had variant SCID or combined immunodeficiency (n = 6), genetic syndromes associated with T-cell impairment (n = 12), secondary T-cell lymphopenia (n = 9), or preterm birth (n = 8). All T-cell lymphopenic infants avoided live vaccines and received appropriate interventions to prevent infections. TREC test specificity was excellent: only 0.08% of infants required a second test, and 0.016% required lymphocyte phenotyping by using flow cytometry. TREC NBS in California has achieved early diagnosis of SCID and other conditions with T-cell lymphopenia, facilitating management and optimizing outcomes. Furthermore, NBS has revealed the incidence, causes, and follow-up of T-cell lymphopenia in a large diverse population.
    The Journal of allergy and clinical immunology 07/2013; 132(1):140-150.e7. DOI:10.1016/j.jaci.2013.04.024 · 11.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This report summarizes the establishment of the first national online registry of primary immune deficency in the United Kingdom, the United Kingdom Primary Immunodeficiency (UKPID Registry). This UKPID Registry is based on the European Society for Immune Deficiency (ESID) registry platform, hosted on servers at the Royal Free site of University College, London. It is accessible to users through the website of the United Kingdom Primary Immunodeficiency Network ( Twenty-seven centres in the United Kingdom are actively contributing data, with an additional nine centres completing their ethical and governance approvals to participate. This indicates that 36 of 38 (95%) of recognized centres in the United Kingdom have engaged with this project. To date, 2229 patients have been enrolled, with a notable increasing rate of recruitment in the past 12 months. Data are presented on the range of diagnoses recorded, estimated minimum disease prevalence, geographical distribution of patients across the United Kingdom, age at presentation, diagnostic delay, treatment modalities used and evidence of their monitoring and effectiveness.
    Clinical & Experimental Immunology 07/2013; 175(1). DOI:10.1111/cei.12172 · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To describe the process and assess outcomes for the first 2 years of newborn screening for severe combined immunodeficiency (SCID NBS) in New York State (NYS). The NYS algorithm utilizes a first-tier molecular screen for TRECs (T-cell receptor excision circles), the absence of which is indicative of increased risk of immunodeficiency. During the first 2 years, 485,912 infants were screened for SCID. Repeat specimens were requested from 561 premature and 746 non-premature infants with low or borderline TRECs. A total of 531 infants were referred for diagnostic evaluation leading to identification of 10 infants with SCID and 87 with a clinically significant non-SCID abnormality based on flow cytometry or CBC results (positive predictive value 20.3 %). Nine infants were diagnosed with typical SCID and one with leaky SCID. SCID diagnoses included two patients with adenosine deaminase deficiency, three patients with typical and one with leaky IL2RG-related SCID, one patient with IL7Rα-related SCID, and three cases of typical SCID, etiology unknown. TRECs were undetectable in eight of the nine babies with typical SCID. Infants with other non-SCID conditions included 27 patients with a syndrome that included T-cell impairment, 18 of which had DiGeorge syndrome. Seventeen infants had T-cell impairment secondary to another clinically significant condition, and 13 were classified as 'other'. Among 30 infants classified as idiopathic T-cell lymphopenia, 11 have since resolved, and the remainder continues to be followed. One infant with undetectable TRECs had normal follow-up studies. Molecular studies revealed the presence of two changes in the infant's DNA. Overall, ten infants with SCID were identified during the first 2 years of screening in NYS, yielding an incidence of approximately 1 in 48,500 live births, which is consistent with the incidence observed by other states screening for SCID. The incidence of any clinically significant laboratory abnormality was approximately 1 in 5,000; both estimates are higher than estimates prior to the onset of newborn screening for SCID. Improvements to the NYS algorithm included the addition of a borderline category that reduced the proportion of infants referred for flow cytometric analysis, without decreasing sensitivity. We identified a large number of infants with abnormal TRECs and subsequent idiopathic T-cell lymphopenia. Long-term follow-up studies are needed to determine the prognosis and optimal treatment for this group of patients, some of whom may present with previously unrecognized, transient lymphopenia of infancy.
    Journal of Clinical Immunology 03/2014; 34(3). DOI:10.1007/s10875-014-0006-7 · 3.18 Impact Factor
Show more