Article

Molecular probes and microarrays for the detection of toxic algae in the genera Dinophysis and Phalacroma (Dinophyta).

Marine Biology, Department of Biology, University of Oslo, P.O. Box 1066, 0316, Oslo, Norway, .
Environmental Science and Pollution Research (Impact Factor: 2.76). 12/2012; Environmental Science and Pollution Research(20):6733 - 6750. DOI: 10.1007/s11356-012-1403-1
Source: PubMed

ABSTRACT Dinophysis and Phalacroma species containing diarrheic shellfish toxins and pectenotoxins occur in coastal temperate waters all year round and prevent the harvesting of mussels during several months each year in regions in Europe, Chile, Japan, and New Zealand. Toxicity varies among morphologically similar species, and a precise identification is needed for early warning systems. Molecular techniques using ribosomal DNA sequences offer a means to identify and detect precisely the potentially toxic species. We designed molecular probes targeting the 18S rDNA at the family and genus levels for Dinophysis and Phalacroma and at the species level for Dinophysis acuminata, Dinophysis acuta, and Dinophysis norvegica, the most commonly occurring, potentially toxic species of these genera in Western European waters. Dot blot hybridizations with polymerase chain reaction (PCR)-amplified rDNA from 17 microalgae were used to demonstrate probe specificity. The probes were modified along with other published fluorescence in situ hybridization and PCR probes and tested for a microarray platform within the MIDTAL project ( http://www.midtal.com ). The microarray was applied to field samples from Norway and Spain and compared to microscopic cell counts. These probes may be useful for early warning systems and monitoring and can also be used in population dynamic studies to distinguish species and life cycle stages, such as cysts, and their distribution in time and space.

0 Bookmarks
 · 
350 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Harmful algal blooms (HABs) are a global problem, which can cause economic loss to aquaculture industry's and pose a potential threat to human health. More attention must be made on the development of effective detection methods for the causative microalgae. The traditional microscopic examination has many disadvantages, such as low efficiency, inaccuracy, and requires specialized skill in identification and especially is incompetent for parallel analysis of several morphologically similar microalgae to species level at one time. This study aimed at exploring the feasibility of using membrane-based DNA array for parallel detection of several microalgae by selecting five microaglae, including Heterosigma akashiwo, Chaetoceros debilis, Skeletonema costatum, Prorocentrum donghaiense, and Nitzschia closterium as test species. Five species-specific (taxonomic) probes were designed from variable regions of the large subunit ribosomal DNA (LSU rDNA) by visualizing the alignment of LSU rDNA of related species. The specificity of the probes was confirmed by dot blot hybridization. The membrane-based DNA array was prepared by spotting the tailed taxonomic probes onto positively charged nylon membrane. Digoxigenin (Dig) labeling of target molecules was performed by multiple PCR/RT-PCR using RNA/DNA mixture of five microalgae as template. The Dig-labeled amplification products were hybridized with the membrane-based DNA array to produce visible hybridization signal indicating the presence of target algae. Detection sensitivity comparison showed that RT-PCR labeling (RPL) coupled with hybridization was tenfold more sensitive than DNA-PCR-labeling-coupled with hybridization. Finally, the effectiveness of RPL coupled with membrane-based DNA array was validated by testing with simulated and natural water samples, respectively. All of these results indicated that RPL coupled with membrane-based DNA array is specific, simple, and sensitive for parallel detection of microalgae which shows promise for monitoring natural samples in the future.
    Environmental Science and Pollution Research 12/2013; · 2.76 Impact Factor

Full-text

View
147 Downloads
Available from
May 28, 2014