Article

Endocannabinoid system and mood disorders: Priming a target for new therapies.

Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Catania, Italy. Electronic address: .
Pharmacology [?] Therapeutics (Impact Factor: 7.75). 12/2012; DOI: 10.1016/j.pharmthera.2012.12.002
Source: PubMed

ABSTRACT The endocannabinoid system (ECS), comprising two G protein-coupled receptors (the cannabinoid receptors 1 and 2 [CB1 and CB2] for marijuana's psychoactive principle Δ(9)-tetrahydrocannabinol [Δ(9)-THC]), their endogenous small lipid ligands (namely anandamide [AEA] and 2-arachidonoylglycerol [2-AG], also known as endocannabinoids), and the proteins for endocannabinoid biosynthesis and degradation, has been suggested as a pro-homeostatic and pleiotropic signaling system activated in a time- and tissue-specific way during physiopathological conditions. In the brain activation of this system modulates the release of excitatory and inhibitory neurotransmitters and of cytokines from glial cells. As such, the ECS is strongly involved in neuropsychiatric disorders, particularly in affective disturbances such as anxiety and depression. It has been proposed that synthetic molecules that inhibit endocannabinoid degradation can exploit the selectivity of endocannabinoid action, thus activating cannabinoid receptors only in those tissues where there is perturbed endocannabinoid turnover due to the disorder, and avoiding the potential side effects of direct CB1 and CB2 activation. However, the realization that endocannabinoids, and AEA in particular, also act at other molecular targets, and that these mediators can be deactivated by redundant pathways, has recently led to question the efficacy of such approach, thus opening the way to new multi-target therapeutic strategies, and to the use of non-psychotropic cannabinoids, such as cannabidiol (CBD), which act via several parallel mechanisms, including indirect interactions with the ECS. The state of the art of the possible therapeutic use of endocannabinoid deactivation inhibitors and phytocannabinoids in mood disorders is discussed in this review article.

0 Followers
 · 
173 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Limbic forebrain endocannabinoid (eCB) signaling is critically involved in stress integration by modulating neurotransmitters release. The purpose of this study was to examine, by brain microdialysis, the effects of fatty acid amide hydrolase (FAAH) inhibition on noradrenergic and γ-aminobutyric acid (GABA)-ergic neurotransmission in the prefrontal cortex (PFC) and basolateral amygdala (BLA) of rats subjected to a 20-min swim stress. Microdialysis started on stress- and drug-naïve rats that were treated with the FAAH inhibitor URB597 (0.1 or 0.3 mg/kg) 30 min before undergoing the stress procedure. Dialysate samples were collected every 20 min from the beginning of the experiment. Concentrations of noradrenaline (NA) and GABA were determined by HPLC coupled to electrochemical and fluorescence detection, respectively. We found that neither URB597 treatment nor 20 min of swim stress exposure per se altered NA and GABA extracellular levels in PFC or BLA. Interestingly, rats treated with 0.1 mg/kg of URB597 followed by 20 min of stress showed significantly higher NA and GABA levels in PFC and BLA. These effects were absent in rats treated with 0.3 mg/kg URB597, indicating a dose-specific effect. Moreover, we found that the pretreatment with the CB1 receptor antagonist rimonabant blocked the URB597 effects on NA and GABA release in PFC and BLA of animals subjected to forced swimming. The present study might provide an important first step toward understanding the mechanisms through which URB597 modulates stress-induced neuroendocrine secretion and behavioral coping strategies. © 2015 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 01/2015; 93(5). DOI:10.1002/jnr.23539 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a growing interest in metabolic alterations in patients with psychiatric disorders due to their increased risk for metabolic syndrome (MetS) development. Inflammation is known to underlie the pathophysiology of schizophrenia and depression as well as MetS. Vulnerability factors for schizophrenia/depression and MetS hence appear to be shared. Based on a Web of Science search, this review examines current evidence for MetS pathophysiology involving dysregulation of adipose tissue signaling - adipokines and pro-inflammatory cytokine, both also known to be aberrant in schizophrenia/depression. Further, gender differences in the incidence and course of schizophrenia/depression were reported. The disturbances linked to the MetS are also described. Therefore, this review further maps the gender differences in the psychiatric-metabolic comorbidities. There is evidence supporting a pathological predisposition to MetS in both schizophrenia and depression in both humans and animal models. This predisposition is dramatically enhanced by antipsychotic medication. Further, there are gender differences from clinical findings suggesting women with schizophrenia/depression are more vulnerable to MetS development. This has not yet been assessed in animal studies. We suggest further validation of existing schizophrenia and depression animal models for the assessment of metabolic disturbances to provide tools for developing new antipsychotics and antidepressants with "metabolically inert" profile or improving the metabolic status in schizophrenic/depressed patients.
    Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 12/2014; DOI:10.5507/bp.2014.060 · 1.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The contribution of two major endocannabinoids, 2-arachidonoylglycerol (2-AG) and anandamide (AEA), in the regulation of fear expression is still unknown. We analyzed the role of different players of the endocannabinoid system on the expression of a strong auditory-cued fear memory in male mice by pharmacological means. The cannabinoid receptor type 1 (CB1) antagonist SR141716 (3 mg/kg) caused an increase in conditioned freezing upon repeated tone presentation on three consecutive days. The cannabinoid receptor type 2 (CB2) antagonist AM630 (3 mg/kg), in contrast, had opposite effects during the first tone presentation, with no effects of the transient receptor potential vanilloid receptor type 1 (TRPV1) antagonist SB366791 (1 and 3 mg/kg). Administration of the CB2 agonist JWH133 (3 mg/kg) failed to affect the acute freezing response, whereas the CB1 agonist CP55,940 (50 μg/kg) augmented it. The endocannabinoid uptake inhibitor AM404 (3 mg/kg), but not VDM11 (3 mg/kg), reduced the acute freezing response. Its co-administration with SR141716 or SB366791 confirmed an involvement of CB1 and TRPV1. AEA degradation inhibition by URB597 (1 mg/kg) decreased, while 2-AG degradation inhibition by JZL184 (4 and 8 mg/kg) increased freezing response. As revealed in conditional CB1-deficient mutants, CB1 on cortical glutamatergic neurons alleviates whereas CB1 on GABAergic neurons slightly enhances fear expression. Moreover, 2-AG fear-promoting effects depended on CB1 signaling in GABAergic neurons, while an involvement of glutamatergic neurons remained inconclusive due to the high freezing shown by vehicle-treated Glu-CB1-KO. Our findings suggest that increased AEA levels mediate acute fear relief, whereas increased 2-AG levels promote the expression of conditioned fear primarily via CB1 on GABAergic neurons.
    Psychopharmacology 03/2015; DOI:10.1007/s00213-015-3917-y · 3.99 Impact Factor

Full-text

Download
169 Downloads
Available from
May 23, 2014