Exome Sequencing Identifies Mutations in CCDC114 as a Cause of Primary Ciliary Dyskinesia.

Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA. Electronic address: .
The American Journal of Human Genetics (Impact Factor: 10.99). 12/2012; DOI: 10.1016/j.ajhg.2012.11.003
Source: PubMed

ABSTRACT Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 14 genes, but they collectively account for only ∼60% of all PCD. To identify mutations that cause PCD, we performed exome sequencing on six unrelated probands with ciliary outer dynein arm (ODA) defects. Mutations in CCDC114, an ortholog of the Chlamydomonas reinhardtii motility gene DCC2, were identified in a family with two affected siblings. Sanger sequencing of 67 additional individuals with PCD with ODA defects from 58 families revealed CCDC114 mutations in 4 individuals in 3 families. All 6 individuals with CCDC114 mutations had characteristic oto-sino-pulmonary disease, but none had situs abnormalities. In the remaining 5 individuals with PCD who underwent exome sequencing, we identified mutations in two genes (DNAI2, DNAH5) known to cause PCD, including an Ashkenazi Jewish founder mutation in DNAI2. These results revealed that mutations in CCDC114 are a cause of ciliary dysmotility and PCD and further demonstrate the utility of exome sequencing to identify genetic causes in heterogeneous recessive disorders.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary ciliary dyskinesia (PCD) is a rare genetically heterogeneous disorder caused by the abnormal structure and/or function of motile cilia. The PCD diagnosis is challenging and requires a well-described clinical phenotype combined with the identification of abnormalities in ciliary ultrastructure and/or beating pattern as well as the recognition of genetic cause of the disease. Regarding the pace of identification of PCD-related genes, a rapid acceleration during the last 2-3 years is notable. This is the result of new technologies, such as whole-exome sequencing, that have been recently applied in genetic research. To date, PCD-causative mutations in 29 genes are known and the number of causative genes is bound to rise. Even though the genetic causes of approximately one-third of PCD cases still remain to be found, the current knowledge can already be used to create new, accurate genetic tests for PCD that can accelerate the correct diagnosis and reduce the proportion of unexplained cases. This review aims to present the latest data on the relations between ciliary structure aberrations and their genetic basis.
    Journal of Medical Genetics 10/2014; 52(1). DOI:10.1136/jmedgenet-2014-102755 · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal recessive disorder that results from functional and ultrastructural abnormalities of motile cilia. Patients with PCD have diverse clinical phenotypes that include chronic upper and lower respiratory tract infections, situs inversus, heterotaxy with or without congenital heart disease, and male infertility, among others. In this report, the carrier frequencies for eleven mutations in eight PCD-associated genes (DNAI1, DNAI2, DNAH5, DNAH11, CCDC114, CCDC40, CCDC65, and C21orf59) that had been found in individuals of Ashkenazi Jewish descent were investigated in order to advise on including them in existing clinical mutation panels for this population. Results showed relatively high carrier frequencies for the DNAH5 c.7502G>C mutation (0.58%), the DNAI2 c.1304G>A mutation (0.50%), and the C21orf59 c.735C>G mutation (0.48%), as well as lower frequencies for mutations in DNAI1, CCDC65, CCDC114, and DNAH11 (0.10–0.29%). These results suggest that several of these genes should be considered for inclusion in carrier screening panels in the Ashkenazi Jewish population.
    11/2014; 3(2). DOI:10.1002/mgg3.124
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary ciliary dyskinesia (PCD) is a ciliopathy, but represents the sole entity from this class of disorders that results from the dysfunction of motile cilia. Characterized by respiratory problems appearing in childhood, infertility, and situs defects in ~50% of individuals, PCD has an estimated prevalence of approximately 1 in 10,000 live births. The diagnosis of PCD can be prolonged due to a lack of disease awareness, coupled with the fact that symptoms can be confused with other more common genetic disorders, such as cystic fibrosis, or environmental insults that result in frequent respiratory infections. A primarily autosomal recessive disorder, PCD is genetically heterogeneous with >30 causal genes identified, posing significant challenges to genetic diagnosis. Here, we provide an overview of PCD as a disorder underscored by impaired ciliary motility; we discuss the recent advances towards uncovering the genetic basis of PCD; we discuss the molecular knowledge gained from PCD gene discovery, which has improved our understanding of motile ciliary assembly; and we speculate on how accelerated diagnosis, together with detailed phenotypic data, will shape the genetic and functional architecture of this disorder.
    01/2015; 7:36. DOI:10.12703/P7-36