Could the multicomponent meningococcal serogroup B vaccine (4CMenB) control Neisseria meningitidis capsular group X outbreaks in Africa?

Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France.
Vaccine (Impact Factor: 3.49). 12/2012; DOI: 10.1016/j.vaccine.2012.12.022
Source: PubMed

ABSTRACT A new vaccine, 4CMenB, is composed of surface proteins of Neisseria meningitidis and is aimed to target serogroup B (MenB) isolates. The vaccine components are present in meningococcal isolates of other serogroups allowing potential use against meningococcal isolates belonging to non-B serogroups. Isolates of serogroup X (MenX) have been emerged in countries of the African meningitis belt. 4CMenB may offer a vaccine strategy against these isolates as there is no available capsule-based vaccine against MenX. We used the Meningococcal Antigen Typing System (MATS) to determine presence, diversity and levels of expression of 4CMenB antigens among 9 MenX isolates from several African countries in order to estimate the potential coverage of MenX by the 4CMenB vaccine. We performed bactericidal assays against these isolates, using pooled sera from 4CMenB-vaccinated infants, adolescents and adults. The African MenX isolates belonged to the same genotype but showed variation in the vaccine antigens. MATS data and bactericidal assays suggest coverage of the 9 African MenX isolates by 4CMenB but not of two unrelated MenX isolates from France. 4CMenB vaccine can be considered for further investigation to control MenX outbreaks in Africa.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A vaccine to prevent infections from the emerging Neisseria meningitidis X (MenX) is becoming an urgent issue. Recently MenX capsular polysaccharide (CPS) fragments conjugated to CRM197 as carrier protein have been confirmed at preclinical stage as promising candidates for vaccine development. However, more insights about the minimal epitope required for the immunological activity of MenX CPS are needed. We report herein the chemical conjugation of fully synthetic MenX CPS oligomers (monomer, dimer, and trimer) to CRM197. Moreover, improvements in some crucial steps leading to the synthesis of MenX CPS fragments are described. Following immunization with the obtained neoglycoconjugates, the conjugated trimer was demonstrated as the minimal fragment possessing immunogenic activity, even though significantly lower than a pentadecamer obtained from the native polymer and conjugated to the same protein. This finding suggests that oligomers longer than three repeating units are possibly needed to mimic the activity of the native polysaccharide.
    Beilstein Journal of Organic Chemistry 10/2014; 10:2367–2376. · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effectiveness of a vaccine is determined not only by the immunogenicity of its components, but especially by how widely it covers the disease-causing strains circulating in a given region. Because vaccine coverage varies over time, this study aimed to detect possible changes that could affect vaccine protection during a specific period in a southern European region. The 4CMenB vaccine is licensed for use in Europe, Canada, and Australia and is mainly directed against Neisseria meningitidis serogroup B. This vaccine contains four main immunogenic components: three recombinant proteins, FHbp, Nhba and NadA, and an outer membrane vesicle [PorA P1.4]. The allelic distribution of FHbp, Nhba, NadA, and PorA antigens in 82 invasive isolates (B and non-B serogroups) isolated from January 2008 to December 2013 were analyzed. 4CMenB was likely protective against 61.8% and 50% of serogroup B and non-B meningococci, respectively, in the entire period, but between 2012 and 2013, the predicted protection fell below 45% (42.1% for serogroup B isolates).The observed decreasing trend in the predicted protection during the 6 years of the study (Χ2 for trend = 4.68, p = 0.03) coincided with a progressive decrease of several clonal complexes (e.g., cc11, cc32 and cc41/44), which had one or more antigens against which the vaccine would offer protection.
    PLoS ONE 12/2014; 9(12):e116024. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prevention of meningococcal disease may be improved by recombinant vaccines such as 4CMenB and rLP2086 that target the factor H binding protein (fHbp), an immunogenic surface component of Neisseria meningitidis present as one of three variants. Whether such vaccines decrease carriage of invasive isolates and thus induce herd immunity is unknown. We analyzed the genetic diversity and levels of expression of fHbp among 268 carriage strains and compare them to those of 467 invasive strains. fhbp gene sequencing showed higher proportions of variants 2 and 3 among carriage isolates (p<0.0001). Carriage isolates expressed lower levels of fHbp (p<0.01) but that remain high enough to predict targeting by antibodies against fHbp particularly in group B isolates belonging to the frequent hypervirulent clonal complexes in Europe and North America (cc32, cc41/44, cc269). This suggests that fHbp targeting meningococcal vaccines might reduce, at least in part, the acquisition of some hyperinvasive isolates.
    PLoS ONE 09/2014; 9(9):e107240. · 3.53 Impact Factor