Article

Quantification of stochastic noise of splicing and polyadenylation in Entamoeba histolytica

Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Département Biologie cellulaire et infection, F-75015 Paris, France, INSERM U786, F-75015 Paris, France, Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et Génétique, F-75015 Paris, France, Jawaharlal Nehru University, School of Life Sciences, New Delhi 110067, India, and Jawaharlal Nehru University, School of Computational and Integrative Sciences, New Delhi 110067, India.
Nucleic Acids Research (Impact Factor: 8.81). 12/2012; 41(3). DOI: 10.1093/nar/gks1271
Source: PubMed

ABSTRACT Alternative splicing and polyadenylation were observed pervasively in eukaryotic messenger RNAs. These alternative isoforms could either be consequences of physiological regulation or stochastic noise of RNA processing. To quantify the extent of stochastic noise in splicing and polyadenylation, we analyzed the alternative usage of splicing and polyadenylation sites in Entamoeba histolytica using RNA-Seq. First, we identified a large number of rarely spliced alternative junctions and then showed that the occurrence of these alternative splicing events is correlated with splicing site sequence, occurrence of constitutive splicing events and messenger RNA abundance. Our results implied the majority of these alternative splicing events are likely to be stochastic error of splicing machineries, and we estimated the corresponding error rates. Second, we observed extensive microheterogeneity of polyadenylation cleavage sites, and the extent of such microheterogeneity is correlated with the occurrence of constitutive cleavage events, suggesting most of such microheterogeneity is likely to be stochastic. Overall, we only observed a small fraction of alternative splicing and polyadenylation isoforms that are unlikely to be solely stochastic, implying the functional relevance of alternative splicing and polyadenylation in E. histolytica is limited. Lastly, we revised the gene models and annotated their 3'UTR in AmoebaDB, providing valuable resources to the community.

Full-text

Available from: Christian Weber, Apr 26, 2015
0 Followers
 · 
136 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.
    PLoS Genetics 04/2014; 10(4):e1004261. DOI:10.1371/journal.pgen.1004261 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Developmental switching between life-cycle stages is a common feature among many pathogenic organisms. Entamoeba histolytica is an important human pathogen and is a leading parasitic cause of death globally. During its life cycle, Entamoeba converts between cysts (essential for disease transmission) and trophozoites (responsible for tissue invasion). Despite being central to its biology, the triggers that are involved in the developmental pathways of this parasite are not well understood. In order to define the transcriptional network associated with stage conversion we used Entamoeba invadens which serves as a model system for Entamoeba developmental biology, and performed RNA sequencing at different developmental time points. In this study RNA-Seq data was utilized to define basal transcriptional control elements as well as to identify promoters which regulate stage-specific gene expression patterns. We discovered that the 5' and 3' untranslated regions of E. invadens genes are short, a median of 20 nucleotides (nt) and 26 nt respectively. Bioinformatics analysis of DNA sequences proximate to the start and stop codons identified two conserved motifs: (i) E. invadens Core Promoter Motif - GAAC-Like (EiCPM-GL) (GAACTACAAA), and (ii) E. invadens 3'- U-Rich Motif (Ei3'-URM) (TTTGTT) in the 5' and 3' flanking regions, respectively. Electrophoretic mobility shift assays demonstrated that both motifs specifically bind nuclear protein(s) from E. invadens trophozoites. Additionally, we identified select genes with stage-specific expression patterns and analyzed the ability of each gene promoter to drive a luciferase reporter gene during the developmental cycle. This approach confirmed three trophozoite-specific, four encystation-specific and two excystation-specific promoters. This work lays the framework for use of stage-specific promoters to express proteins of interest in a particular life-cycle stage, adding to the molecular toolbox for genetic manipulation of E. invadens and allowing further dissection of factors controlling Entamoeba developmental biology.
    International Journal for Parasitology 07/2014; 44(11). DOI:10.1016/j.ijpara.2014.06.008 · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genome of the human intestinal parasite Entamoeba histolytica contains nearly 3000 introns and bioinformatic predictions indicate that major and minor spliceosomes occur in Entamoeba. However, except for the U2-, U4-, U5- and U6 snRNAs, no other splicing factor has been cloned and characterized. Here, we HA-tagged cloned the snRNP component U1A and assessed its expression and nuclear localization. Because the snRNP-free U1A form interacts with polyadenylate-binding protein, HA-U1A immunoprecipitates could identify early and late splicing complexes. Avoiding Entamoeba's endonucleases and ensuring the precipitation of RNA-binding proteins, parasite cultures were UV cross-linked prior nuclear fractions immunoprecipitations with HA antibodies, and precipitates were subjected to tandem mass spectrometry (MS/MS) analyses. To discriminate their nuclear roles (chromatin-, co-transcriptional-, splicing-related), MS/MS analyses were carried out with proteins eluted with MS2-GST-sepharose from nuclear extracts of an MS2 aptamer-tagged Rabx13 intron amoeba transformants. Thus, we probed thirty-six Entamoeba proteins corresponding to 32 cognate splicing-specific factors, including 13 DExH/D helicases required for all stages of splicing, and 12 different splicing-related helicases were identified also. Furthermore 50 additional proteins, possibly involved in co-transcriptional processes were identified, revealing the complexity of co-transcriptional splicing in Entamoeba. Some of these later factors were not previously found in splicing complex analyses.
    Journal of Proteomics 08/2014; 111. DOI:10.1016/j.jprot.2014.07.027 · 3.93 Impact Factor