Lung Cancer Screening Gets Risk-Specific

Journal of the National Cancer Institute (Impact Factor: 12.58). 12/2012; 105(1). DOI: 10.1093/jnci/djs631
Source: PubMed
0 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deaths from lung cancer exceed those from any other type of malignancy, with 1·5 million deaths in 2010. Prevention and smoking cessation are still the main methods to reduce the death toll. The US National Lung Screening Trial, which compared CT screening with chest radiograph, yielded a mortality advantage of 20% to participants in the CT group. International debate is ongoing about whether sufficient evidence exists to implement CT screening programmes. When questions about effectiveness and cost-effectiveness have been answered, which will await publication of the largest European trial, NELSON, and pooled analysis of European CT screening trials, we discuss the main topics that will need consideration. These unresolved issues are risk prediction models to identify patients for CT screening; radiological protocols that use volumetric analysis for indeterminate nodules; options for surgical resection of CT-identified nodules; screening interval; and duration of screening. We suggest that a demonstration project of biennial screening over a 4-year period should be undertaken.
    The Lancet 08/2013; 382(9893):732-41. DOI:10.1016/S0140-6736(13)61614-1 · 45.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent screening trial results indicate that low-dose computed tomography (LDCT) reduces lung cancer mortality in high-risk patients. However, high false-positive rates, costs, and potential harms highlight the need for complementary biomarkers. The diagnostic performance of a noninvasive plasma microRNA signature classifier (MSC) was retrospectively evaluated in samples prospectively collected from smokers within the randomized Multicenter Italian Lung Detection (MILD) trial. Plasma samples from 939 participants, including 69 patients with lung cancer and 870 disease-free individuals (n = 652, LDCT arm; n = 287, observation arm) were analyzed by using a quantitative reverse transcriptase polymerase chain reaction-based assay for MSC. Diagnostic performance of MSC was evaluated in a blinded validation study that used prespecified risk groups. The diagnostic performance of MSC for lung cancer detection was 87% for sensitivity and 81% for specificity across both arms, and 88% and 80%, respectively, in the LDCT arm. For all patients, MSC had a negative predictive value of 99% and 99.86% for detection and death as a result of disease, respectively. LDCT had sensitivity of 79% and specificity of 81% with a false-positive rate of 19.4%. Diagnostic performance of MSC was confirmed by time dependency analysis. Combination of both MSC and LDCT resulted in a five-fold reduction of LDCT false-positive rate to 3.7%. MSC risk groups were significantly associated with survival (χ1(2) = 49.53; P < .001). This large validation study indicates that MSC has predictive, diagnostic, and prognostic value and could reduce the false-positive rate of LDCT, thus improving the efficacy of lung cancer screening.
    Journal of Clinical Oncology 01/2014; 32(8). DOI:10.1200/JCO.2013.50.4357 · 18.43 Impact Factor