Article

Generating super-shedders: co-infection increases bacterial load and egg production of a gastrointestinal helminth.

Center for Infectious Disease Dynamics, Pennsylvania State University, , University Park, PA 16802, USA.
Journal of The Royal Society Interface (Impact Factor: 3.86). 03/2013; 10(80):20120588. DOI: 10.1098/rsif.2012.0588
Source: PubMed

ABSTRACT Co-infection by multiple parasites is common within individuals. Interactions between co-infecting parasites include resource competition, direct competition and immune-mediated interactions and each are likely to alter the dynamics of single parasites. We posit that co-infection is a driver of variation in parasite establishment and growth, ultimately altering the production of parasite transmission stages. To test this hypothesis, three different treatment groups of laboratory mice were infected with the gastrointestinal helminth Heligmosomoides polygyrus, the respiratory bacterial pathogen Bordetella bronchiseptica lux(+) or co-infected with both parasites. To follow co-infection simultaneously, self-bioluminescent bacteria were used to quantify infection in vivo and in real-time, while helminth egg production was monitored in real-time using faecal samples. Co-infection resulted in high bacterial loads early in the infection (within the first 5 days) that could cause host mortality. Co-infection also produced helminth 'super-shedders'; individuals that chronically shed the helminth eggs in larger than average numbers. Our study shows that co-infection may be one of the underlying mechanisms for the often-observed high variance in parasite load and shedding rates, and should thus be taken into consideration for disease management and control. Further, using self-bioluminescent bacterial reporters allowed quantification of the progression of infection within the whole animal of the same individuals at a fine temporal scale (daily) and significantly reduced the number of animals used (by 85%) compared with experiments that do not use in vivo techniques. Thus, we present bioluminescent imaging as a novel, non-invasive tool offering great potential to be taken forward into other applications of infectious disease ecology.

Full-text

Available from: Sarah E Perkins, May 30, 2015
0 Followers
 · 
219 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Co-infections with parasites or viruses drive tuberculosis dynamics in humans, but little is known about their effects in other non-human hosts. This work aims to investigate the relationship between Mycobacterium bovis infection and other pathogens in wild boar (Sus scrofa), a recognized reservoir of bovine tuberculosis (bTB) in Mediterranean ecosystems. For this purpose, it has been assessed whether contacts with common concomitant pathogens are associated with the development of severe bTB lesions in 165 wild boar from mid-western Spain. The presence of bTB lesions affecting only one anatomic location (cervical lymph nodes), or more severe patterns affecting more than one location (mainly cervical lymph nodes and lungs), was assessed in infected animals. In addition, the existence of contacts with other pathogens such as porcine circovirus type 2 (PCV2), Aujeszky's disease virus (ADV), swine influenza virus, porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and Metastrongylus spp, was evaluated by means of serological, microbiological and parasitological techniques. The existence of contacts with a structured community of pathogens in wild boar infected by M. bovis was statistically investigated by null models. Association between this community of pathogens and bTB severity was examined using a Partial Least Squares regression approach. Results showed that adult wild boar infected by M. bovis had contacted with some specific, non-random pathogen combinations. Contact with PCV2, ADV and infection by Metastrongylus spp, was positively correlated to tuberculosis severity. Therefore, measures against these concomitant pathogens such as vaccination or deworming, might be useful in tuberculosis control programmes in the wild boar. However, given the unexpected consequences of altering any community of organisms, further research should evaluate the impact of such measures under controlled conditions. Furthermore, more research including other important pathogens, such as gastro-intestinal nematodes, will be necessary to complete this picture.
    PLoS ONE 10/2014; 9(10):e110123. DOI:10.1371/journal.pone.0110123 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal microbiota are pivotal in determining the developmental, metabolic and immunological status of the mammalian host. However, the intestinal tract may also accommodate pathogenic organisms, including helminth parasites which are highly prevalent in most tropical countries. Both microbes and helminths must evade or manipulate the host immune system to reside in the intestinal environment, yet whether they influence each other's persistence in the host remains unknown. We now show that abundance of Lactobacillus bacteria correlates positively with infection with the mouse intestinal nematode, Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) and Th17 responses. Moreover, H. polygyrus raises Lactobacillus species abundance in the duodenum of C57BL/6 mice, which are highly susceptible to H. polygyrus infection, but not in BALB/c mice, which are relatively resistant. Sequencing of samples at the bacterial gyrB locus identified the principal Lactobacillus species as L. taiwanensis, a previously characterized rodent commensal. Experimental administration of L. taiwanensis to BALB/c mice elevates regulatory T cell frequencies and results in greater helminth establishment, demonstrating a causal relationship in which commensal bacteria promote infection with an intestinal parasite and implicating a bacterially-induced expansion of Tregs as a mechanism of greater helminth susceptibility. The discovery of this tripartite interaction between host, bacteria and parasite has important implications for both antibiotic and anthelmintic use in endemic human populations.
    Gut Microbes 08/2014; 5(4). DOI:10.4161/gmic.32155
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Co-infections by multiple pathogen strains are common in the wild. Theory predicts co-infections to have major consequences for both within- and between-host disease dynamics, but data are currently scarce. Here, using common garden populations of Plantago lanceolata infected by two strains of the pathogen Podosphaera plantaginis, either singly or under co-infection, we find the highest disease prevalence in co-infected treatments both at the host genotype and population levels. A spore-trapping experiment demonstrates that co-infected hosts shed more transmission propagules than singly infected hosts, thereby explaining the observed change in epidemiological dynamics. Our experimental findings are confirmed in natural pathogen populations-more devastating epidemics were measured in populations with higher levels of co-infection. Jointly, our results confirm the predictions made by theoretical and experimental studies for the potential of co-infection to alter disease dynamics across a large host-pathogen metapopulation.
    Nature Communications 01/2015; 6:5975. DOI:10.1038/ncomms6975 · 10.74 Impact Factor