Bioactivity and Bioavailability of Ginsenosides are Dependent on the Glycosidase Activities of the A/J Mouse Intestinal Microbiome Defined by Pyrosequencing.

Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas, 77030, USA.
Pharmaceutical Research (Impact Factor: 3.95). 12/2012; DOI: 10.1007/s11095-012-0925-z
Source: PubMed

ABSTRACT PURPOSE: To investigate the ability of bacteria in the intestinal microbiome to convert naturally occurring primary ginsenosides in red ginseng extract to active secondary ginsenosides. METHODS: Anti-proliferative ginsenoside activity was tested using mouse lung cancer LM1 cells. Permeabilities were evaluated in Caco-2 cell monolayers. Systemic exposure of secondary ginsenosides was determined in A/J mice. 16S rRNA gene pyrosequencing was used to determine membership and abundance of bacteria in intestinal microbiome. RESULTS: Secondary ginsenoside C-K exhibited higher anti-proliferative activity and permeability than primary ginsenosides. Significant amounts of secondary ginsenosides (F2 and C-K) were found in blood of A/J mice following oral administration of primary ginsenoside Rb1. Because mammalian cells did not hydrolyze ginsenoside, we determined the ability of bacteria to hydrolyze ginsenosides and found that Rb1 underwent stepwise hydrolysis to Rd, F2, and then C-K. Formation of F2 from Rd was the rate-limiting step in the biotransformation of Rb1 to C-K. CONCLUSION: Conversion to F2 is the rate-limiting step in bioactivation of primary ginsenosides by A/J mouse intestinal microbiome, whose characterization reveals the presence of certain bacterial families capable of enabling the formation of F2 and C-K in vivo.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial conversion of ginsenosides is crucial for the health-promoting effects of ginsenosides. Previous studies on the biotransformation of ginsenoside Rb1 (Rb1) by gut bacteria have focused on the ginsenoside Rd (Rd) pathway (Rb1 [rightwards arrow] Rd [rightwards arrow] ginsenoside F2 (F2) [rightwards arrow] compound K (Cpd K)). This study aims to examine the gypenoside pathway in human gut bacteria in vitro. The metabolic pathways of ginsenoside Rb1 and its metabolites ginsenoside Rd and gypenoside XVII in human gut bacteria were investigated by incubating the compounds anaerobically with pooled or individual gut bacteria samples from healthy volunteers. Ginsenoside Rb1, the metabolites generated by human gut bacteria, and degraded products in simulated gastric fluid (SGF) were qualitatively analyzed using an LC/MSD Trap system in the negative ion mode and quantitatively determined by HPLC-UV analysis. When incubated anaerobically with pooled gut bacteria, Rb1 generated five metabolites, namely Rd, F2, Cpd K, and the rare gypenosides XVII (G-XVII) and LXXV (G-LXXV). The gypenoside pathway (Rb1 [rightwards arrow] G-XVII [rightwards arrow] G-LXXV [rightwards arrow] Cpd K) was rapid, intermediate, and minor, and finally converted Rb1 to Cpd K via G-XVII [rightwards arrow] F2 (major)/G-LXXV (minor). Both the Rd and gypenoside pathways exhibited great inter-individual variations in age-and sex-independent manners (P > 0.05). Rb1 was highly acid-labile and degraded rapidly to form F2, ginsenoside Rg3, ginsenoside Rh2, and Cpd K, but did not generate the gypenosides in SGF. The formation of the gypenosides might be explained by the involvement of a gut bacteria-mediated enzymatic process. Rb1 was metabolized to G-XVII, F2 (major) or G-LXXL (minor), and finally Cpd K by human gut bacteria in vitro.
    Chinese Medicine 11/2013; 8(1):22. DOI:10.1186/1749-8546-8-22 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, Woongjin fermented red ginseng extract (WFRG) was evaluated for its potential ability to act as an adjuvant for the immune response of mice. For the in vitro study, macrophages were treated with serial concentrations (1 μg/mL, 10 μg/mL, and 100 μg/mL) of WFRG. For in vivo studies, mice were administered different concentrations (10 mg/kg/day, 100 mg/kg/day, and 200 mg/kg/day) of WFRG orally for 21 days. In vitro, the production of nitric oxide and TNF-α by RAW 264.7 cells increased in a dose-dependent manner. In vivo, WFRG enhanced the proliferation of splenocytes induced by two mitogens (i.e., concanavalin A and lipopolysaccharide [LPS]) and increased LPS-induced production of TNF-α and IL-6, but not IL-1β. In conclusion, WFRG has the potential to modulate immune function and should be further investigated as an immunostimulatory agent.
    03/2014; 19(1):10-8. DOI:10.3746/pnf.2014.19.1.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1. Anhuienoside C (A-C) is the main active component of the saponin exact of “Di Wu”, an oral drug for rheumatism treatment in China. In this study, we aimed to elucidate the metabolic pathways of A-C by intestinal bacteria using the metabolomic approach. 2. Four deglycosylated metabolites (M1, M2, M3 and M4) were identified after A-C (50 µM) was incubated with rat fecal lysate. Chemical structures of these metabolites were determined by high-resolution masses and nuclear magnetic resonance (NMR). 3. A one-compartment pharmacokinetic model was used to describe the formation of bacterial metabolites at a dose of 10 µM A-C. The results revealed that formation of M1 and M2 was rapid, whereas formation of M3 was rather slow. Further, it was found that the metabolites were generated by successive cleavage of the glycosyl residues. 4. This is the first report that A-C is subjected to efficient bacterial metabolism in the gut with M1 and M2 as main metabolites. Our study should be helpful for a better understanding of in vivo disposition of oral A-C.
    Xenobiotica 09/2014; 45(3). DOI:10.3109/00498254.2014.960024 · 2.10 Impact Factor